Facial Nonrepetitive Vertex Coloring of Plane Graphs

被引:11
|
作者
Barat, Janos [1 ,2 ]
Czap, Julius [3 ]
机构
[1] Technol Univ Pannonia, Dept Comp Sci & Syst, H-8200 Veszprem, Hungary
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[3] Tech Univ Kosice, Fac Econ, Dept Appl Math & Business Informat, SK-04001 Kosice, Slovakia
基金
澳大利亚研究理事会;
关键词
nonrepetitive; colouring; plane graph; Thue sequences;
D O I
10.1002/jgt.21695
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence s1,s2,,sk,s1,s2,,sk is a repetition. A sequence S is nonrepetitive, if no subsequence of consecutive terms of S is a repetition. Let G be a plane graph. That is, a planar graph with a fixed embedding in the plane. A facial path consists of consecutive vertices on the boundary of a face. A facial nonrepetitive vertex coloring of a plane graph G is a vertex coloring such that the colors assigned to the vertices of any facial path form a nonrepetitive sequence. Let f(G) denote the minimum number of colors of a facial nonrepetitive vertex coloring of G. Harant and Jendrol' conjectured that f(G) can be bounded from above by a constant. We prove that f(G)24 for any plane graph G.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条
  • [1] Facial packing vertex-coloring of subdivided plane graphs
    Czap, Julius
    Jendrol', Stanislav
    Sugerek, Peter
    Valiska, Juraj
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 95 - 100
  • [2] Strong parity vertex coloring of plane graphs
    Kaiser, Tomas
    Rucky, Ondrej
    Stehlik, Matej
    Skrekovski, Riste
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (01): : 143 - 158
  • [3] FACIAL GRACEFUL COLORING OF PLANE GRAPHS
    Czap, Julius
    OPUSCULA MATHEMATICA, 2024, 44 (06) : 815 - 825
  • [4] FACIAL RAINBOW COLORING OF PLANE GRAPHS
    Jendrol, Stanislav
    Kekenakova, Lucia
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 889 - 897
  • [5] Nonrepetitive vertex colorings of graphs
    Harant, Jochen
    Jendrol', Stanislav
    DISCRETE MATHEMATICS, 2012, 312 (02) : 374 - 380
  • [6] 3-facial coloring of plane graphs
    Havet, Frederic
    Sereni, Jean-Sebastien
    Skrekovski, Riste
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) : 231 - 247
  • [7] Facial packing edge-coloring of plane graphs
    Czap, Julius
    Jendrol, Stanislav
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 71 - 75
  • [8] A note on 2-facial coloring of plane graphs
    Montassier, Mickael
    Raspaud, Andre
    INFORMATION PROCESSING LETTERS, 2006, 98 (06) : 235 - 241
  • [9] Facial Rainbow Edge-Coloring of Plane Graphs
    Stanislav Jendrol’
    Graphs and Combinatorics, 2018, 34 : 669 - 676
  • [10] Facial Rainbow Edge-Coloring of Plane Graphs
    Jendrol, Stanislav
    GRAPHS AND COMBINATORICS, 2018, 34 (04) : 669 - 676