A continuous Galerkin method for pseudo-hyperbolic equations with variable coefficients

被引:8
|
作者
Zhao, Zhihui [1 ]
Li, Hong [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
基金
美国国家科学基金会;
关键词
Continuous Galerkin method; Pseudo-hyperbolic equations with variable coefficients; Prior error estimate; Numerical example; CONTINUOUS FINITE-ELEMENTS; SPACE; TIME;
D O I
10.1016/j.jmaa.2019.01.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, we study a space-time continuous Galerkin (STCG) method with mesh change for two-dimensional (2-D) pseudo-hyperbolic equations with variable coefficients, which gives the same treatment for time and space discretizations, namely both time and space variables are discretized via finite element (FE) method. In addition, it allows the change of time step and space mesh which are necessary for adaptive algorithms. We prove the existence and uniqueness of approximation solution and give a prior error estimate without any conditions attached to the space-time grid. Finally, a numerical example is given to confirm the feasibility to the scheme constructed here. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1053 / 1072
页数:20
相关论文
共 50 条
  • [1] Ad galerkin analysis for nonlinear pseudo-hyperbolic equations
    Xia, C
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (02) : 125 - 134
  • [2] AD GALERKIN ANALYSIS FOR NONLINEAR PSEUDO-HYPERBOLIC EQUATIONS
    Xia Cui(Laboratory of Computational Physics
    [J]. Journal of Computational Mathematics, 2003, (02) : 125 - 134
  • [3] A new splitting H1-Galerkin mixed method for pseudo-hyperbolic equations
    Liu, Yang
    Wang, Jinfeng
    Li, Hong
    Gao, Wei
    He, Siriguleng
    [J]. World Academy of Science, Engineering and Technology, 2011, 51 : 1444 - 1449
  • [4] Hyperbolic and pseudo-hyperbolic equations in the theory of vibration
    Fedotov, Igor
    Shatalov, Michael
    Marais, Julian
    [J]. ACTA MECHANICA, 2016, 227 (11) : 3315 - 3324
  • [5] Hyperbolic and pseudo-hyperbolic equations in the theory of vibration
    Igor Fedotov
    Michael Shatalov
    Julian Marais
    [J]. Acta Mechanica, 2016, 227 : 3315 - 3324
  • [6] H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations
    Liu, Yang
    Li, Hong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 212 (02) : 446 - 457
  • [7] On Submanifolds of Pseudo-Hyperbolic Space with 1-Type Pseudo-Hyperbolic Gauss Map
    Yegin, R.
    Dursun, U.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2016, 12 (04) : 315 - 337
  • [8] INITIAL VALUE PROBLEM FOR A CLASS OF NONLINEAR PSEUDO-HYPERBOLIC EQUATIONS
    陈国旺
    杨志坚
    [J]. Acta Mathematicae Applicatae Sinica, 1993, (02) : 166 - 173
  • [9] A NONLINEAR PSEUDO-HYPERBOLIC SYSTEM
    孙和生
    [J]. Science China Mathematics, 1989, (01) : 1 - 19
  • [10] On Submanifolds with 2-Type Pseudo-Hyperbolic Gauss Map in Pseudo-Hyperbolic Space
    Sen, Ruya Yegin
    Dursun, Ugur
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (01)