Application of persulfate in low-temperature atmospheric-pressure plasma jet for enhanced treatment of onychomycosis

被引:6
|
作者
Zhang, Qunxia [1 ,2 ]
Fang, Cao [1 ,3 ]
Chen, Zhu [1 ,2 ]
Huang, Qing [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab High Magnet Field & Ion Beam Phys Biol, Inst Tech Biol & Agr Engn, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Anhui Jianzhu Univ, Hefei 230601, Peoples R China
来源
PLASMA SCIENCE & TECHNOLOGY | 2020年 / 22卷 / 02期
基金
中国国家自然科学基金;
关键词
low-temperature plasma (LTP); persulfate; onychomycosis; Trichophyton rubrum (T rubrum); ERGOSTEROL BIOSYNTHESIS; PHOTOCATALYTIC ACTIVITY; ORGANIC CONTAMINANTS; TRICHOPHYTON-RUBRUM; HYDROXYL RADICALS; NONTHERMAL PLASMA; ESCHERICHIA-COLI; DISCHARGE PLASMA; IN-VITRO; DEGRADATION;
D O I
10.1088/2058-6272/ab568b
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fungal infection of human nails, or onychomycosis, affects 10% of the world's adult population, but current therapies have various drawbacks. In this work, we employed a self-made low temperature plasma (LTP) device, namely, an atmospheric-pressure plasma jet (APPJ) device to treat the nails infected with Trichophyton rubrum (T. rubrum) with the aid of persulfate solution. We found that persulfate solution had a promoting effect on plasma treatment of onychomycosis. With addition of sodium persulfate, the APPJ therapy could cure onychomycosis after several times of treatment. As such, this work has demonstrated a novel and effective approach which makes good use of LTP technique in the treatment of onychomycosis.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Application of persulfate in low-temperature atmospheric-pressure plasma jet for enhanced treatment of onychomycosis
    张群霞
    方草
    陈祝
    黄青
    [J]. Plasma Science and Technology, 2020, 22 (02) : 89 - 96
  • [2] Application of Low-Temperature Atmospheric-Pressure Plasma in Metallurgy
    Gadzhiev, M. Kh
    Il'ichev, M., V
    Yusupov, D., I
    Tyuftyaev, A. S.
    [J]. RUSSIAN METALLURGY, 2021, 2021 (12): : 1504 - 1509
  • [3] Application of Low-Temperature Atmospheric-Pressure Plasma in Metallurgy
    M. Kh. Gadzhiev
    M. V. Il’ichev
    D. I. Yusupov
    A. S. Tyuftyaev
    [J]. Russian Metallurgy (Metally), 2021, 2021 : 1504 - 1509
  • [4] Electrical characteristics of a low-temperature, atmospheric-pressure helium plasma jet
    Sakakita, Hajime
    Shimizu, Tetsuji
    Kiyama, Satoru
    [J]. AIP ADVANCES, 2021, 11 (01)
  • [5] Sterilization by low-temperature atmospheric-pressure plasma
    Dzimitrowicz, Anna
    Jamroz, Piotr
    Nowak, Piotr
    [J]. POSTEPY MIKROBIOLOGII, 2015, 54 (02): : 195 - 200
  • [6] Surface characterization of organosilicon films by low-temperature atmospheric-pressure plasma jet
    Wu, Shin-Yi
    Tseng, Yu-Chien
    Li, Hsiao-Ling
    Lu, Hsueh-Ning
    Huang, Chun
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (06)
  • [7] The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements
    Karakas, Erdinc
    Akman, Mehmet Arda
    Laroussi, Mounir
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2012, 21 (03):
  • [8] An Atmospheric-Pressure Low-Temperature Plasma Jet for Growth Inhibition of Escherichia Coli
    Wagenaars, Erik
    van der Woude, Marjan
    Vann, Roddy
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2346 - 2347
  • [9] Low-temperature atmospheric-pressure plasma sources for plasma medicine
    Setsuhara, Yuichi
    [J]. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2016, 605 : 3 - 10
  • [10] In Vitro Killing of Clinical Fungal Strains by Low-Temperature Atmospheric-Pressure Plasma Jet
    Daeschlein, Georg
    Scholz, Sebastian
    von Woedtke, Thomas
    Niggemeier, Maria
    Kindel, Eckhard
    Brandenburg, Ronny
    Weltmann, Klaus-Dieter
    Juenger, Michael
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (02) : 815 - 821