THE CONSTRAINT SATISFACTION PROBLEM AND UNIVERSAL ALGEBRA

被引:18
|
作者
Barto, Libor [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
关键词
constraint satisfaction problem; universal algebra; COMPLEXITY; DICHOTOMY; TRACTABILITY;
D O I
10.1017/bsl.2015.25
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives a brief survey of current research on the complexity of the constraint satisfaction problem over fixed constraint languages.
引用
收藏
页码:319 / 337
页数:19
相关论文
共 50 条
  • [1] Universal algebra and hardness results for constraint satisfaction problems
    Larose, Benoit
    Tesson, Pascal
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 267 - +
  • [2] Universal algebra and hardness results for constraint satisfaction problems
    Larose, Benoit
    Tesson, Pascal
    [J]. THEORETICAL COMPUTER SCIENCE, 2009, 410 (18) : 1629 - 1647
  • [3] Kernelization of Constraint Satisfaction Problems: A Study Through Universal Algebra
    Lagerkvist, Victor
    Wahlstrom, Magnus
    [J]. PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING (CP 2017), 2017, 10416 : 157 - 171
  • [4] Algebra complexity problems involving graph homomorphism, semigroups and the constraint satisfaction problem
    Seif, S
    Szabó, C
    [J]. JOURNAL OF COMPLEXITY, 2003, 19 (02) : 153 - 160
  • [5] An algorithm for constraint satisfaction problem
    Zhuk, Dmitry
    [J]. 2017 IEEE 47TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2017), 2017, : 1 - 6
  • [6] UNIVERSAL ALGEBRAIC METHODS FOR CONSTRAINT SATISFACTION PROBLEMS
    Bergman, Clifford
    Demeo, William
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2022, 18 (01)
  • [7] UNIVERSAL ALGEBRA AND EULERS OFFICER PROBLEM
    EVANS, T
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (06): : 466 - 473
  • [8] A Meta Constraint Satisfaction Optimization Problem for the Optimization of Regular Constraint Satisfaction Problems
    Loeffler, Sven
    Liu, Ke
    Hofstedt, Petra
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 435 - 442
  • [9] The Complexity of the Distributed Constraint Satisfaction Problem
    Butti, Silvia
    Dalmau, Victor
    [J]. THEORY OF COMPUTING SYSTEMS, 2024, 68 (04) : 838 - 867
  • [10] Landscapes and the maximal constraint satisfaction problem
    Belaidouni, M
    Hao, JK
    [J]. ARTIFICIAL EVOLUTION, 2000, 1829 : 242 - 253