Intertwining operators for l-conformal Galilei algebras and hierarchy of invariant equations

被引:26
|
作者
Aizawa, N. [1 ]
Kimura, Y. [1 ]
Segar, J. [2 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Sci, Dept Math & Informat Sci, Sakai, Osaka 5998531, Japan
[2] Ramakrishna Mission Vivekananda Coll, Dept Phys, Madras 600004, Tamil Nadu, India
关键词
SYMMETRY;
D O I
10.1088/1751-8113/46/40/405204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The l-conformal Galilei algebra, denoted by g(l) (d), is a non-semisimple Lie algebra specified by a pair of parameters (d, l). The algebra is regarded as a nonrelativistic analogue of the conformal algebra. We derive hierarchies of partial differential equations which have invariance of the group generated by g(l) (d) with a central extension as kinematical symmetry. This is done by developing a representation theory such as Verma modules, singular vectors of g(l) (d) and vector field representations for d = 1, 2.
引用
收藏
页数:14
相关论文
共 35 条
  • [1] Representations of l-conformal Galilei algebra and hierarchy of invariant equation
    Aizawa, N.
    Kimura, Y.
    Segar, J.
    8TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES (QTS8), 2014, 512
  • [3] Casimir operators of centrally extended l-conformal Galilei algebra
    Galajinsky, Anton
    Masterov, Ivan
    NUCLEAR PHYSICS B, 2019, 943
  • [4] On dynamical realizations of l-conformal Galilei and Newton-Hooke algebras
    Galajinsky, Anton
    Masterov, Ivan
    NUCLEAR PHYSICS B, 2015, 896 : 244 - 254
  • [5] Chiral and real N=2 supersymmetric l-conformal Galilei algebras
    Aizawa, N.
    Kuznetsova, Z.
    Toppan, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (09)
  • [6] Lagrangian formulation for perfect fluid equations with the l-conformal Galilei symmetry
    Snegirev, Timofei
    PHYSICAL REVIEW D, 2024, 110 (04)
  • [7] Hamiltonian formulation for perfect fluid equations with the l-conformal Galilei symmetry
    Snegirev, Timofei
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 192
  • [8] N=4 l-conformal Galilei superalgebra
    Galajinsky, Anton
    Masterov, Ivan
    PHYSICS LETTERS B, 2017, 771 : 401 - 407
  • [9] On dynamical realizations of l-conformal Galilei groups
    Andrzejewski, K.
    Gonera, J.
    Kosinski, P.
    Maslanka, P.
    NUCLEAR PHYSICS B, 2013, 876 (01) : 309 - 321
  • [10] Dynamical realization of l-conformal Galilei algebra and oscillators
    Galajinsky, Anton
    Masterov, Ivan
    NUCLEAR PHYSICS B, 2013, 866 (02) : 212 - 227