Information geometry in vapour-liquid equilibrium

被引:61
|
作者
Brody, Dorje C. [1 ]
Hook, Daniel W. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England
关键词
DER-WAALS THEORY; RIEMANNIAN GEOMETRY; DIFFERENTIAL GEOMETRY; FISHER INFORMATION; STATE; VAN; SPACE; THERMODYNAMICS; DIVERGENCE; CURVATURE;
D O I
10.1088/1751-8113/42/2/023001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the square-root map p -> root p a probability density function p can be represented as a point of the unit sphere S in the Hilbert space of square-integrable functions. If the density function depends smoothly on a set of parameters, the image of the map forms a Riemannian submanifold M subset of S. The metric on M induced by the ambient spherical geometry of S is the Fisher information matrix. Statistical properties of the system modelled by a parametric density function p can then be expressed in terms of information geometry. An elementary introduction to information geometry is presented, followed by a precise geometric characterization of the family of Gaussian density functions. When the parametric density function describes the equilibrium state of a physical system, certain physical characteristics can be identified with geometric features of the associated information manifold M. Applying this idea, the properties of vapour-liquid phase transitions are elucidated in geometrical terms. For an ideal gas, phase transitions are absent and the geometry of M is flat. In this case, the solutions to the geodesic equations yield the adiabatic equations of state. For a van der Waals gas, the associated geometry of M is highly nontrivial. The scalar curvature of M diverges along the spinodal boundary which envelopes the unphysical region in the phase diagram. The curvature is thus closely related to the stability of the system.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] VAPOUR-LIQUID EQUILIBRIUM STILL
    VILCU, R
    CENUSE, Z
    [J]. REVUE ROUMAINE DE CHIMIE, 1971, 16 (11) : 1635 - &
  • [2] VAPOUR-LIQUID EQUILIBRIUM OF TERNARY SYSTEMS
    DICAVE, S
    [J]. BRITISH CHEMICAL ENGINEERING, 1968, 13 (06): : 314 - &
  • [3] Modelling of hydrocracking with vapour-liquid equilibrium
    Pellegrini, Laura A.
    Gamba, Simone
    Calemma, Vincenzo
    Bonomi, Susi
    [J]. CHEMICAL ENGINEERING SCIENCE, 2008, 63 (17) : 4285 - 4291
  • [4] A MODIFIED VAPOUR-LIQUID EQUILIBRIUM STILL
    FOWLER, RT
    [J]. JOURNAL OF THE SOCIETY OF CHEMICAL INDUSTRY-LONDON, 1949, 68 (04): : 131 - 132
  • [5] A VACUUM VAPOUR-LIQUID EQUILIBRIUM STILL
    ELLIS, SRM
    FROOME, BA
    [J]. CHEMISTRY & INDUSTRY, 1954, (09) : 237 - 240
  • [6] VAPOUR-LIQUID EQUILIBRIUM RELATIONSHIPS IN EXTRACTIVE DISTILLATION
    HERINGTON, EFG
    [J]. NATURE, 1952, 170 (4335) : 935 - 935
  • [7] CORRELATION OF BINARY VAPOUR-LIQUID EQUILIBRIUM DATA
    JONAH, DA
    ELLIS, SRM
    [J]. JOURNAL OF APPLIED CHEMISTRY, 1965, 15 (03): : 151 - +
  • [8] The vapour-liquid equilibrium of n-alkanes
    Vega, C
    Garzon, B
    MacDowell, LG
    Padilla, P
    Calero, S
    Lago, S
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (47) : 9643 - 9648
  • [9] Application of linearised vapour-liquid equilibrium equations
    Castillo, FJL
    Towler, GP
    [J]. CHEMICAL ENGINEERING SCIENCE, 1997, 52 (19) : 3405 - 3407
  • [10] A LOW PRESSURE VAPOUR-LIQUID EQUILIBRIUM STILL
    TAYLOR, KH
    ELLIS, SRM
    HANDS, CHG
    [J]. JOURNAL OF APPLIED CHEMISTRY, 1966, 16 (08): : 245 - +