Convergence results for elliptic quasivariational inequalities

被引:8
|
作者
Sofonea, Mircea [1 ]
Benraouda, Ahlem [1 ]
机构
[1] Univ Perpignan, Lab Math & Phys, 52 Ave Paul Alduy, F-66860 Perpignan, France
来源
关键词
Quasivariational inequality; Penalty method; Convergence result; Elastic rod; Nonlinear spring; Unilateral constraint; Weak solution;
D O I
10.1007/s00033-016-0750-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we state and prove various convergence results for a general class of elliptic quasivariational inequalities with constraints. Thus, we prove the convergence of the solution of a class of penalized problems to the solution of the original inequality, as the penalty parameter converges to zero. We also prove a continuous dependence result of the solution with respect the convex set of constraints. Then, we consider a mathematical model which describes the equilibrium of an elastic rod attached to a nonlinear spring. We derive the variational formulation of the model which is in a form of an elliptic quasivariational inequality for the displacement field. We prove the unique weak solvability of the model, and then we state and prove two convergence results and provide their corresponding mechanical interpretation.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Convergence results for elliptic quasivariational inequalities
    Mircea Sofonea
    Ahlem Benraouda
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [2] Convergence analysis for elliptic quasivariational inequalities
    Barboteu, Mikael
    Sofonea, Mircea
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [3] Convergence analysis for elliptic quasivariational inequalities
    Mikael Barboteu
    Mircea Sofonea
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [4] Convergence Results for Optimal Control Problems Governed by Elliptic Quasivariational Inequalities
    Sofonea, Mircea
    Tarzia, Domingo A.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (11) : 1326 - 1351
  • [5] Convergence results for primal and dual history-dependent quasivariational inequalities
    Sofonea, Mircea
    Benraouda, Ahlem
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (02) : 471 - 494
  • [6] The Optimal Control Problems for Generalized Elliptic Quasivariational Inequalities
    Chang, Shih-Sen
    Ahmadini, Abdullah Ali H.
    Salahuddin, Min
    Liu, Min
    Tang, Jinfang
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [7] Existence Results for Constrained Quasivariational Inequalities
    Motreanu, V. V.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [8] Convergence Results for Elliptic Variational-Hemivariational Inequalities
    Cai, Dong-ling
    Sofonea, Mircea
    Xiao, Yi-bin
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 2 - 23
  • [9] A convergence result for history-dependent quasivariational inequalities
    Benraouda, Ahlem
    Sofonea, Mircea
    [J]. APPLICABLE ANALYSIS, 2017, 96 (15) : 2635 - 2651
  • [10] Existence Results for General Mixed Quasivariational Inequalities
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,