AN APPROACH ON IMPROVING MODIS ALBEDO PRODUCT BY USING THE INFORMATION FROM MODIS LAI PRODUCT

被引:0
|
作者
Xue, Huazhu [1 ]
Wang, Jindi [1 ]
Ma, Han [1 ]
Liu, Yan [1 ]
Zhang, Hu [1 ]
Qu, Yonghua [1 ]
机构
[1] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
关键词
Leaf Area Index(LAI); albedo; MCD43A3; semiempirical kernel-driven model; SURFACE ALBEDO; MODEL; BRDF;
D O I
10.1109/IGARSS.2012.6351729
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Surface albedo is an important parameter in modeling climate processes as it determines the energy budget of the earth's surface. Operational surface albedo products are available from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. However, due to the factors associated with weather, sensors and algorithms, albedo products from satellite observations often have many gaps. In this paper, we reformed the semi-empirical kernel-driven model to express the relation between the bidirectional reflectance distribution function (BRDF) and the Leaf Area Index (LAI). Within a small region, the soil properties under plant canopies are similar, therefore the reflectance is unanimous. When the land cover types are identical and the LAI values are same, the canopy top reflectance should be same. Thus, within a small region, the pixels of same properties have the same reflectance. For one pixel, E if the MODIS albedo product has no retrieval but MODIS LAI product has high quality retrieval, E the LAI information can be used to filled the MODIS albedo data gaps. A comparison indicates that the filled data conform well with the in-situ measurements albedo.
引用
收藏
页码:4252 / 4255
页数:4
相关论文
共 50 条
  • [1] Assessment of the MODIS LAI product for Australian ecosystems
    Hill, MJ
    Senarath, U
    Lee, A
    Zeppel, M
    Nightingale, JM
    Williams, RDJ
    McVicar, TR
    REMOTE SENSING OF ENVIRONMENT, 2006, 101 (04) : 495 - 518
  • [2] The MODIS BRDF/albedo product: Prototyping albedo retrieval using AVHRR and GOES
    Strahler, A
    dEntremont, R
    Lucht, WW
    Hu, B
    Li, X
    Schaaf, CB
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1220 - 1223
  • [3] Variability of Albedo and Utility of the MODIS Albedo Product in Forested Wetlands
    David M. Sumner
    Qinglong Wu
    Chandra S. Pathak
    Wetlands, 2011, 31 : 229 - 237
  • [4] Variability of Albedo and Utility of the MODIS Albedo Product in Forested Wetlands
    Sumner, David M.
    Wu, Qinglong
    Pathak, Chandra S.
    WETLANDS, 2011, 31 (02) : 229 - 237
  • [5] Validation of the MODIS LAI product in the Murrumbidgee Catchment, Australia
    McColl, K. A.
    Pipunic, R. C.
    Ryu, D.
    Walker, J. P.
    19TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2011), 2011, : 1973 - 1979
  • [6] THE SPATIAL SCALE RESEARCH OF MODIS LAI PRODUCT AUTHETICITY VERIFICATION
    Wei, Wei
    Chen, Yunping
    Tong, Ling
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6459 - 6462
  • [7] The temporal scale research of MODIS albedo product authenticity verification
    Cao, Yongxing
    Xue, Zhihang
    Cheng, Hui
    Xiong, Yajv
    Chen, Yunping
    Tong, Ling
    8TH IGRSM INTERNATIONAL CONFERENCE AND EXHIBITION ON GEOSPATIAL & REMOTE SENSING (IGRSM 2016), 2016, 37
  • [8] Evaluation of the MODIS Albedo product over a heterogeneous agricultural area
    Sobrino, J. A.
    Franch, B.
    Oltra-Carrio, R.
    Vermote, E. F.
    Fedele, E.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (15) : 5530 - 5540
  • [9] DEVELOPMENT OF A MULTILAYER MODIS IST-ALBEDO PRODUCT OF GREENLAND
    Hall, D. K.
    Comiso, J. C.
    Cullather, R. I.
    DiGirolamo, N. E.
    Nowicki, S. M.
    Medley, B. C.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 694 - 696
  • [10] Improving the MODIS LAI compositing using prior time-series information
    Pu, Jiabin
    Yan, Kai
    Gao, Si
    Zhang, Yiman
    Park, Taejin
    Sun, Xian
    Weiss, Marie
    Knyazikhin, Yuri
    Myneni, Ranga B.
    REMOTE SENSING OF ENVIRONMENT, 2023, 287