First-principles calculations of properties of orthorhombic iron carbide Fe7C3 at the Earth's core conditions

被引:20
|
作者
Raza, Zamaan [1 ]
Shulumba, Nina [1 ,2 ]
Caffrey, Nuala M. [1 ]
Dubrovinsky, Leonid [3 ]
Abrikosov, Igor A. [1 ,4 ,5 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
[2] Univ Saarland, Funct Mat, D-66123 Saarbrucken, Germany
[3] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany
[4] NUST MISIS, Mat Modeling & Dev Lab, Moscow 119049, Russia
[5] Tomsk State Univ, LACOMAS Lab, Tomsk 634050, Russia
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 21期
基金
瑞典研究理事会;
关键词
AUGMENTED-WAVE METHOD; FE-C SYSTEM; INNER-CORE; CARBON; MANTLE; PRESSURES;
D O I
10.1103/PhysRevB.91.214112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A recently discovered phase of orthorhombic iron carbide o-Fe7C3 [Prescher et al., Nat. Geosci. 8, 220 (2015)] is assessed as a potentially important phase for interpretation of the properties of the Earth's core. In this paper, we carry out first-principles calculations on o-Fe7C3, finding properties to be in broad agreement with recent experiments, including a high Poisson's ratio (0.38). Our enthalpy calculations suggest that o-Fe7C3 is more stable than Eckstrom-Adcock hexagonal iron carbide (h-Fe7C3) below approximately 100 GPa. However, at 150 GPa, the two phases are essentially degenerate in terms of Gibbs free energy, and further increasing the pressure towards Earth's core conditions stabilizes h-Fe7C3 with respect to the orthorhombic phase. Increasing the temperature tends to stabilize the hexagonal phase at 360 GPa, but this trend may change beyond the limit of the quasiharmonic approximation.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] First-principles calculations of high pressure and temperature properties of Fe7C3
    范莉莉
    刘勋
    高畅
    刘中利
    李艳丽
    黄海军
    Chinese Physics B, 2023, 32 (07) : 719 - 724
  • [2] First-principles calculations of high pressure and temperature properties of Fe7C3
    Fan, Li-Li
    Liu, Xun
    Gao, Chang
    Liu, Zhong-Li
    Li, Yan-Li
    Huang, Hai-Jun
    CHINESE PHYSICS B, 2023, 32 (07)
  • [3] Structural, electronic, and magnetic properties of iron carbide Fe7C3 phases from first-principles theory
    Fang, C. M.
    van Huis, M. A.
    Zandbergen, H. W.
    PHYSICAL REVIEW B, 2009, 80 (22):
  • [4] High-pressure behavior of iron carbide (Fe7C3) at inner core conditions
    Mookherjee, Mainak
    Nakajima, Yoichi
    Steinle-Neumann, Gerd
    Glazyrin, Konstantin
    Wu, Xiang
    Dubrovinsky, Leonid
    McCammon, Catherine
    Chumakov, Aleksandr
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2011, 116
  • [5] Iron at Earth's Core Conditions from First Principles Calculations
    Alfe, Dario
    THEORETICAL AND COMPUTATIONAL METHODS IN MINERAL PHYSICS: GEOPHYSICAL APPLICATIONS, 2010, 71 : 337 - 354
  • [6] Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the Earth's core
    Nakajima, Yoichi
    Takahashi, Eiichi
    Sata, Nagayoshi
    Nishihara, Yu
    Hirose, Kei
    Funakoshi, Ken-ich
    Ohishi, Yasuo
    AMERICAN MINERALOGIST, 2011, 96 (07) : 1158 - 1165
  • [7] First principles calculations on crystalline and liquid iron at Earth's core conditions
    Vocadlo, L
    de Wijs, GA
    Kresse, G
    Gillan, M
    Price, GD
    FARADAY DISCUSSIONS, 1997, 106 : 205 - 217
  • [8] Phase relations of Fe3C and Fe7C3 up to 185 GPa and 5200 K: Implication for the stability of iron carbide in the Earth's core
    Liu, Jin
    Lin, Jung-Fu
    Prakapenka, Vitali B.
    Prescher, Clemens
    Yoshino, Takashi
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (24) : 12415 - 12422
  • [9] Phase Relations of Iron Carbides Fe2C, Fe3C, and Fe7C3 at the Earth's Core Pressures and Temperatures
    Sagatov, N. E.
    Gavryushkin, P. N.
    Medrish, I., V
    Inerbaev, T. M.
    Litasov, K. D.
    RUSSIAN GEOLOGY AND GEOPHYSICS, 2020, 61 (12) : 1345 - 1353
  • [10] IDENTIFICATION OF ECKSTROM-ADCOCK IRON CARBIDE AS FE7C3
    HERBSTEIN, FH
    SNYMAN, JA
    INORGANIC CHEMISTRY, 1964, 3 (06) : 894 - &