Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n=2 (mod 4) and n=3 (mod 4)

被引:81
|
作者
Hitzer, Eckhard M. S. [1 ]
Mawardi, Bahn [1 ]
机构
[1] Univ Fukui, Dept Appl Phys, Bunkyo 3-9-1, Fukui 9108507, Japan
关键词
vector derivative; multivector-valued function; Clifford (geometric) algebra; Clifford Fourier transform; uncertainty principle;
D O I
10.1007/s00006-008-0098-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First, the basic concepts of the multivector functions, vector differential and vector derivative in geometric algebra are introduced. Second, we define a, generalized real Fourier transform on Clifford multivector-valued functions (f : R-n -> Cl-n,Cl-0, n = 2,3 (mod 4)). Third, we show a set of important properties of the Clifford Fourier transform on Cl-n,Cl-0, n = 2,3 (mod 4) such as differentiation properties, and the Plancherel theorem, independent of special commutation properties. Fourth, we develop and utilize commutation properties for giving explicit formulas for fx(m), f del(m) and for the Clifford convolution. Finally, we apply Clifford Fourier transform properties for proving an uncertainty principle for Cl-n,Cl-0, n = 2,3 (mod 4) multivector functions.
引用
收藏
页码:715 / 736
页数:22
相关论文
共 50 条