A Genetic Algorithm and Cell Mapping Hybrid Method for Multi-objective Optimization Problems

被引:0
|
作者
Naranjani, Yousef [1 ]
Sardahi, Yousef [1 ]
Sun, J. Q. [1 ]
机构
[1] Univ Calif, Sch Engn, Merced, CA 95343 USA
关键词
SEARCH; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a hybrid multi-objective optimization (MOO) algorithm consisting of an integration of the genetic algorithm (GA) and the simple cell mapping (SCM) is proposed. The GA converges quickly toward a solution neighborhood, but it takes a considerable amount of time to converge to the Pareto set. The SCM can find the global solution because it sweeps the whole space of interest. However, the computational effort grows exponentially with the dimension of the design space. In the hybrid algorithm, the GA is used initially to find a rough solution for the multi-objective optimization problem (MOP). Then, the SCM method takes over to find the non-dominated solutions in each region returned by the GA. It should be pointed out that one point near or on the Pareto set is enough for the SCM to recover the rest of the solution in the region. For comparison purpose, the hybrid algorithm, the GA and SCM methods are applied to solve some of benchmark problems with the Hausdorff distance, number of function evaluations and CPU time as performance metrics. The results show that the hybrid algorithm outperforms other methods with a modest computational time increase. Although the hybrid algorithm does not guarantee finding the global solution, it has much improved chance as demonstrated by one of the benchmark problems.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [1] A Hybrid Evolutionary Algorithm and Cell Mapping Method for Multi-Objective Optimization Problems
    Sun, J. Q.
    Schutze, Oliver
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 492 - 500
  • [2] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [3] A hybrid method of evolutionary algorithm and simple cell mapping for multi-objective optimization problems
    Naranjani Y.
    Hernández C.
    Xiong F.-R.
    Schütze O.
    Sun J.-Q.
    International Journal of Dynamics and Control, 2017, 5 (3) : 570 - 582
  • [4] BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems
    Li, Xiang
    Du, Gang
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (01) : 282 - 302
  • [5] A PSO-Based Hybrid Multi-Objective Algorithm for Multi-Objective Optimization Problems
    Wang, Xianpeng
    Tang, Lixin
    ADVANCES IN SWARM INTELLIGENCE, PT II, 2011, 6729 : 26 - 33
  • [6] A Species-Based Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Sun Fuquan
    Wang Hongfeng
    Lu Fuqiang
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5063 - 5066
  • [7] Compensation method in genetic algorithm for multi-objective optimization
    Yuan Hua
    Chen Guo-qing
    PROCEEDINGS OF 2005 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1 AND 2, 2005, : 943 - 946
  • [8] The new model of parallel genetic algorithm in multi-objective optimization problems - Divided range multi-objective genetic algorithm
    Hiroyasu, T
    Miki, M
    Watanabe, S
    PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 333 - 340
  • [9] Efficient Hybrid Memetic Algorithm for Multi-Objective Optimization Problems
    Mohammed, Tareq Abed
    Sahmoud, Shaaban
    Bayat, Oguz
    2017 INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (ICET), 2017,
  • [10] Solution of constrained optimization problems by multi-objective genetic algorithm
    Summanwar, VS
    Jayaraman, VK
    Kulkarni, BD
    Kusumakar, HS
    Gupta, K
    Rajesh, J
    COMPUTERS & CHEMICAL ENGINEERING, 2002, 26 (10) : 1481 - 1492