Asymptotic orbit complexity of infinite measure preserving transformations

被引:14
|
作者
Zweimuller, R [1 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
关键词
Kolmogorov complexity; algorithmic information content; infinite invariant measure; intermittency; indifferent orbits; ration ergodic theorem;
D O I
10.3934/dcds.2006.15.353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the asymptotics of the Kolmogorov complexity of symbolic orbits of certain infinite measure preserving transformations. Specifically, we prove that the Brudno-White individual ergodic theorem for the complexity generalizes to a ratio ergodic theorem analogous to previously established extensions of the Shannon - McMillan - Breiman theorem.
引用
收藏
页码:353 / 366
页数:14
相关论文
共 50 条