Heuristic discrepancy principle for variational regularization of inverse problems

被引:2
|
作者
Liu, Huan [1 ]
Real, Rommel [2 ,3 ]
Lu, Xiliang [1 ,4 ]
Jia, Xianzheng [5 ]
Jin, Qinian [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Australian Natl Univ, Math Sci Inst, Canberra, ACT 0200, Australia
[3] Univ Philippines Mindanao, Dept Math Phys & Comp Sci, Davao 8022, Philippines
[4] Wuhan Univ, Hubei Computat Sci Key Lab, Wuhan 430072, Peoples R China
[5] Shandong Univ Technol, Sch Math & Stat, Zibo, Shandong, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金; 美国国家科学基金会;
关键词
variational regularization; variational source conditions; convergence; electrical impedance tomography; heuristic parameter choice rule; TIKHONOV REGULARIZATION; CONVERGENCE-RATES; PARAMETER; IDENTIFICATION; MINIMIZATION;
D O I
10.1088/1361-6420/ab844a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the variational regularization for inverse problems in a general form. Based on the discrepancy principle, we propose a heuristic parameter choice rule for choosing the regularization parameter which does not require the information on the noise level and is therefore purely data driven. Under variational source conditions, we obtaina posteriorierror estimates. According to the Bakushinskii veto, convergence in the worst case scenario cannot be expected in general. However, by imposing certain conditions on the noisy data, we establish a convergence result for the heuristic rule. Applications of the results are addressed and numerical simulations are reported.
引用
收藏
页数:35
相关论文
共 50 条