Why Daubechies wavelets are so successful

被引:1
|
作者
Cortez, Solymar Ayala [1 ]
Bokati, Laxman [2 ]
Velasco, Aaron [1 ]
Kreinovich, Vladik [3 ]
机构
[1] Univ Texas El Paso, Dept Geol Sci, 500 W Univ, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Computat Sci Program, 500 W Univ, El Paso, TX 79968 USA
[3] Univ Texas El Paso, Dept Comp Sci, 500 W Univ, El Paso, TX 79968 USA
基金
美国国家科学基金会;
关键词
Daubechais wavelets; seismology; invariance;
D O I
10.3233/JIFS-212021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many applications, including analysis of seismic signals, Daubechies wavelets perform much better than other families of wavelets. In this paper, we provide a possible theoretical explanation for the empirical success of Daubechies wavelets. Specifically, we show that these wavelets are optimal with respect to any optimality criterion that satisfies the natural properties of scale- and shift-invariance.
引用
收藏
页码:6933 / 6938
页数:6
相关论文
共 50 条
  • [1] Generalized Daubechies wavelets
    Vonesch, C
    Blu, T
    Unser, M
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 593 - 596
  • [2] Daubechies wavelets and mathematica
    Rowe, Allistair C.H.
    Abbott, Paul C.
    [J]. Computers in Physics, 1995, 9 (06):
  • [3] COMPLEX DAUBECHIES WAVELETS
    LINA, JM
    MAYRAND, M
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (03) : 219 - 229
  • [4] PARAMETRIZATIONS FOR DAUBECHIES WAVELETS
    LINA, JM
    MAYRAND, M
    [J]. PHYSICAL REVIEW E, 1993, 48 (06) : R4160 - R4163
  • [5] Series representation of Daubechies' wavelets
    Lu, XG
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (01) : 81 - 96
  • [6] THE OPTIMAL COEFFICIENTS IN DAUBECHIES WAVELETS
    STRANG, G
    [J]. PHYSICA D, 1992, 60 (1-4): : 239 - 244
  • [7] SERIES REPRESENTATION OF DAUBECHIES' WAVELETS
    X.G. Lu (Department of Applied Mathematics
    [J]. Journal of Computational Mathematics, 1997, (01) : 81 - 96
  • [8] CHARACTERIZATION OF MULTIPLIER SPACES WITH DAUBECHIES WAVELETS
    杨奇祥
    [J]. Acta Mathematica Scientia, 2012, 32 (06) : 2315 - 2321
  • [9] Daubechies wavelets in analyzing grooved wire
    Zhao, Yu-lei
    Ju, Zhi-qin
    Tong, Chuang-ming
    Zhong, Wei-jun
    [J]. 2008 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOLS 1-4, 2008, : 718 - 721
  • [10] On the computation of scaling coefficients of Daubechies' wavelets
    Cerna, Dana
    Finek, Vaclav
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (03): : 399 - 419