Progressive Algebraic Soft-Decision Decoding of Reed-Solomon Codes

被引:20
|
作者
Chen, Li [1 ]
Tang, Siyun [1 ]
Ma, Xiao [1 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Algebraic soft-decision decoding; complexity reduction; Koetter-Vardy algorithm; progressive interpolation; Reed-Solomon codes; INTERPOLATION; ALGORITHM;
D O I
10.1109/TCOMM.2012.100912.110752
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The algebraic soft-decision decoding (ASD) algorithm is a polynomial-time soft decoding algorithm for Reed-Solomon (RS) codes. It outperforms both the algebraic hard-decision decoding (AHD) and the conventional unique decoding algorithms, but with a high computational cost. This paper proposes a progressive ASD (PASD) algorithm that enables the conventional ASD algorithm to perform decoding with an adjustable designed factorization output list size (OLS). The OLS is enlarged progressively leading to an incremental computation for the interpolation and an enhanced error-correction capability. Multiple factorizations are performed in order to find out the intended message polynomial which will be validated by a cyclic redundant check (CRC) code. The incremental interpolation constraints are introduced to characterize the progressive decoding. The validity analysis of the algorithm shows the PASD algorithm is a natural and computationally saving generalization of the ASD algorithm, delivering the same interpolation solution. The average decoding complexity of the algorithm is further theoretically characterized, revealing its dependence on the channel condition. The simulation results further validate the analysis by showing that the average decoding complexity can be converged to the minimal level in a good channel condition. Finally, performance evaluation shows the PASD algorithm preserves the error-correction capability of the ASD algorithm.
引用
收藏
页码:433 / 442
页数:10
相关论文
共 50 条
  • [1] Algebraic soft-decision decoding of Reed-Solomon codes
    Koetter, R
    Vardy, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) : 2809 - 2825
  • [2] Algebraic soft-decision decoding of Reed-Solomon codes
    Kötter, R
    Vardy, A
    [J]. 2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 61 - 61
  • [3] Applications of algebraic soft-decision decoding of Reed-Solomon codes
    Gross, Warren J.
    Kschischang, Frank R.
    Koetter, Ralf
    Gulak, P. Glenn
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2006, 54 (07) : 1224 - 1234
  • [4] Progressive Algebraic Soft-Decision Decoding of Reed-Solomon Codes Using Module Minimization
    Xing, Jiongyue
    Chen, Li
    Bossert, Martin
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (11) : 7379 - 7391
  • [5] Soft-decision decoding of Reed-Solomon codes
    Nara, H
    Tanaka, H
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (03): : 60 - 69
  • [6] Efficient architecture for algebraic soft-decision decoding of Reed-Solomon codes
    Li, Xuemei
    Zhang, Wei
    Liu, Yanyan
    [J]. IET COMMUNICATIONS, 2015, 9 (01) : 10 - 16
  • [7] Performance Analysis of Algebraic Soft-Decision Decoding of Reed-Solomon Codes
    Duggan, Andrew
    Barg, Alexander
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) : 5012 - 5018
  • [8] Iterative algebraic soft-decision list decoding of Reed-Solomon codes
    El-Khamy, M
    McEliece, RJ
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2006, 24 (03) : 481 - 490
  • [9] Exponential error bounds for algebraic soft-decision decoding of Reed-Solomon codes
    Ratnakar, N
    Koetter, R
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 3899 - 3917
  • [10] Efficient interpolation and factorization in algebraic soft-decision decoding of Reed-Solomon codes
    Koetter, R
    Ma, J
    Vardy, A
    Ahmed, A
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 365 - 365