Direct Error Rate Minimization of Hidden Markov Models

被引:0
|
作者
Keshet, Joseph [1 ]
Cheng, Chih-Chieh [2 ]
Stoehr, Mark [3 ]
McAllester, David [1 ]
机构
[1] TTI Chicago, Chicago, IL 60637 USA
[2] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA 94607 USA
[3] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
hidden Markov models; online learning; direct error minimization; discriminative training; automatic speech recognition; minimum phone error; minimum frame error;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore discriminative training of HMM parameters that directly minimizes the expected error rate. In discriminative training one is interested in training a system to minimize a desired error function, like word error rate, phone error rate, or frame error rate. We review a recent method (McAllester, Hazan and Keshet, 2010), which introduces an analytic expression for the gradient of the expected error-rate. The analytic expression leads to a perceptron-like update rule, which is adapted here for training of HMMs in an online fashion: While the proposed method can work with any type of the error function used in speech recognition, we evaluated it on phoneme recognition of TIMIT, when the desired error function used for training was frame error rate. Except for the case of GMM with a single mixture per state, the proposed update rule provides lower error rates, both in terms of frame error rate and phone error rate, than other approaches, including MCE and large margin.
引用
收藏
页码:456 / +
页数:2
相关论文
共 50 条
  • [1] Markov models - hidden Markov models
    Grewal, Jasleen K.
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (09) : 795 - 796
  • [2] Markov models — hidden Markov models
    Jasleen K. Grewal
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 795 - 796
  • [3] Hidden Markov models for the burst error statistics of Viterbi decoding
    Chao, CC
    Yao, YL
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1996, 44 (12) : 1620 - 1622
  • [4] Optimal error exponents in hidden Markov models order estimation
    Gassiat, E
    Boucheron, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (04) : 964 - 980
  • [5] Markov models and heart rate variability hidden dynamic
    Silipo, R
    Deco, G
    Vergassola, R
    COMPUTERS IN CARDIOLOGY 1998, VOL 25, 1998, 25 : 337 - 340
  • [6] Hidden Markov Models Predict Foreign Exchange Rate
    Nootyaskool, Supakit
    Choengtong, Wuttichow
    2014 14th International Symposium on Communications and Information Technologies (ISCIT), 2014, : 98 - 100
  • [7] Minimum Classification Error training of Hidden Markov Models for handwriting recognition
    Biem, AE
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 1529 - 1532
  • [8] Optimal Detection and Error Exponents for Hidden Semi-Markov Models
    Bajovic, Dragana
    He, Kanghang
    Stankovic, Lina
    Vukobratovic, Dejan
    Stankovic, Vladimir
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (05) : 1077 - 1092
  • [9] Hidden Markov models for burst error characterization in indoor radio channels
    GarciaFrias, J
    Crespo, PM
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1997, 46 (04) : 1006 - 1020
  • [10] Genotype Error Detection Using Hidden Markov Models of Haplotype Diversity
    Kennedy, Justin
    Mandoiu, Ion
    Pasaniuc, Bogdan
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2008, 15 (09) : 1155 - 1171