On clustering biological data using unsupervised and semi-supervised message passing

被引:0
|
作者
Geng, HM [1 ]
Deng, XT [1 ]
Bastola, M [1 ]
Ali, H [1 ]
机构
[1] Univ Nebraska, Med Ctr, Dept Pathol & Microbiol, Omaha, NE 68198 USA
关键词
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Noticing that unsupervised clustering may produce clusters that are irrelevant to the research hypotheses and interests, we generalize traditional unsupervised clustering into semi-supervised clustering based on our previously proposed Message Passing Clustering (WC). In the semi-supervised MPC, prior knowledge such as instance-level and attribute-level constraints are used to guide the clustering process towards better and interpretable partitions. We applied the unsupervised MPC (null background) to phylogenetic analysis of Mycobacterium and the semi-supervised WC to colon cancer microarray data analysis. The results show that MPC is superior to the widely accepted neighbor-joining and hierarchical clustering methods, and the semi-supervised MPC is even more powerful in biological data analysis such as gene selection and cancer diagnosis using microarray.
引用
收藏
页码:294 / 298
页数:5
相关论文
共 50 条
  • [1] Unsupervised and semi-supervised clustering by message passing: soft-constraint affinity propagation
    Leone, M.
    Sumedha
    Weigt, M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2008, 66 (01): : 125 - 135
  • [2] Unsupervised and semi-supervised clustering by message passing: soft-constraint affinity propagation
    M. Leone Sumedha
    M. Weigt
    [J]. The European Physical Journal B, 2008, 66 : 125 - 135
  • [3] A semi-supervised clustering approach using labeled data
    Taghizabet, A.
    Tanha, J.
    Amini, A.
    Mohammadzadeh, J.
    [J]. SCIENTIA IRANICA, 2023, 30 (01) : 104 - 115
  • [4] Iterative double clustering for unsupervised and semi-supervised learning
    El-Yaniv, R
    Souroujon, O
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 1025 - 1032
  • [5] A Semi-supervised Clustering for Incomplete Data
    Goel, Sonia
    Tushir, Meena
    [J]. APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 323 - 331
  • [6] Semi-supervised clustering for complicated data
    Huang, Tian-Qiang
    Yu, Yang-Qiang
    Qin, Xiao-Lin
    [J]. Kongzhi yu Juece/Control and Decision, 2010, 25 (01): : 14 - 19
  • [7] A new approach to clustering biological data using message passing
    Geng, HM
    Bastola, D
    Ali, H
    [J]. 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 493 - 494
  • [8] Semi-supervised fuzzy c-means clustering of biological data
    Ceccarelli, M
    Maratea, A
    [J]. FUZZY LOGIC AND APPLICATIONS, 2006, 3849 : 259 - 266
  • [9] Semi-supervised data clustering using particle swarm optimisation
    Lai, Daphne T. C.
    Miyakawa, Minami
    Sato, Yuji
    [J]. SOFT COMPUTING, 2020, 24 (05) : 3499 - 3510
  • [10] Categorization Using Semi-Supervised Clustering
    Hu, Jianying
    Singh, Moninder
    Mojsilovic, Aleksandra
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3666 - 3669