Rates of convergence for the k-nearest neighbor estimators with smoother regression functions

被引:1
|
作者
Ayano, Takanori [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
基金
日本学术振兴会;
关键词
Regression; Nonparametric estimation; Nearest neighbor; Rate of convergence; STRONG UNIVERSAL CONSISTENCY; NONPARAMETRIC REGRESSION;
D O I
10.1016/j.jspi.2012.03.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X, Y) be a R-d x R-valued random vector. In regression analysis one wants to estimate the regression function m(x) := E(Y vertical bar X = x) from a data set. In this paper we consider the rate of convergence for the k-nearest neighbor estimators in case that X is uniformly distributed on [0, 1](d), Var(Y vertical bar X = x) is bounded, and m is (p, C)-smooth. It is an open problem whether the optimal rate can be achieved by a k-nearest neighbor estimator for 1 < p <= 1.5. We solve the problem affirmatively. This is the main result of this paper. Throughout this paper, we assume that the data is independent and identically distributed and as an error criterion we use the expected L-2 error. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2530 / 2536
页数:7
相关论文
共 50 条
  • [1] Rates of Convergence of the Functional k-Nearest Neighbor Estimate
    Biau, Gerard
    Cerou, Frederic
    Guyader, Arnaud
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) : 2034 - 2040
  • [2] Strong uniform consistency of k-nearest neighbor regression function estimators
    Qin, Geng-Sheng
    Cheng, Ping
    Science in China Series A: Mathematics, Physics, Astronomy and Technological Sciences, 1994, 37 (09):
  • [3] Strong Uniform Consistency of k-Nearest Neighbor Regression Function Estimators
    秦更生
    成平
    Science China Mathematics, 1994, (09) : 1032 - 1040
  • [4] Strong Uniform Consistency of k-Nearest Neighbor Regression Function Estimators
    秦更生
    成平
    ScienceinChina,SerA., 1994, Ser.A.1994 (09) : 1032 - 1040
  • [5] STRONG UNIFORM CONSISTENCY OF K-NEAREST NEIGHBOR REGRESSION FUNCTION ESTIMATORS
    QIN, GS
    CHENG, P
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1994, 37 (09): : 1032 - 1040
  • [6] Convergence of functional k-nearest neighbor regression estimate with functional responses
    Lian, Heng
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 31 - 40
  • [7] Model-calibrated k-nearest neighbor estimators
    Magnussen, Steen
    Tomppo, Erkki
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2016, 31 (02) : 183 - 193
  • [8] Demystifying Fixed k-Nearest Neighbor Information Estimators
    Gao, Weihao
    Oh, Sewoong
    Viswanath, Pramod
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (08) : 5629 - 5661
  • [9] Demystifying Fixed k-Nearest Neighbor Information Estimators
    Gao, Weihao
    Oh, Sewoong
    Viswanath, Pramod
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1267 - 1271
  • [10] A k-nearest neighbor approach for functional regression
    Laloe, Thomas
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (10) : 1189 - 1193