Inverse uncertainty quantification of input model parameters for thermal-hydraulics simulations using expectation-maximization under Bayesian framework

被引:14
|
作者
Shrestha, Rijan [1 ]
Kozlowski, Tomasz [1 ]
机构
[1] Univ Illinois, Dept Nucl Plasma & Radiol Engn, 104 S Wright St, Urbana, IL 61801 USA
关键词
expectation-maximization; maximum a posteriori; Gaussian; MAXIMUM-LIKELIHOOD;
D O I
10.1080/02664763.2015.1089220
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantification of uncertainties in code responses necessitates knowledge of input model parameter uncertainties. However, nuclear thermal-hydraulics code such as RELAP5 and TRACE do not provide any information on input model parameter uncertainties. Moreover, the input model parameters for physical models in these legacy codes were derived under steady-state flow conditions and hence might not be accurate to use in the analysis of transients without accounting for uncertainties. We present a Bayesian framework to estimate the posterior mode of input model parameters' mean and variance by implementing the iterative expectation-maximization algorithm. For this, we introduce the idea of model parameter multiplier. A log-normal transformation is used to transform the model parameter multiplier to pseudo-parameter. Our analysis is based on two main assumptions on pseudo-parameter. First, a first-order linear relationship is assumed between code responses and pseudo-parameters. Second, the pseudo-parameters are assumed to be normally distributed. The problem is formulated to express the scalar random variable, the difference between experimental result and base (nominal) code-calculated value as a linear combination of pseudo-parameters.
引用
收藏
页码:1011 / 1026
页数:16
相关论文
共 34 条
  • [1] A comprehensive survey of inverse uncertainty quantification of physical model parameters in nuclear system thermal-hydraulics codes
    Wu, Xu
    Xie, Ziyu
    Alsafadi, Farah
    Kozlowski, Tomasz
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2021, 384 (384)
  • [2] Hierarchical Bayesian modeling for Inverse Uncertainty Quantification of system thermal-hydraulics code using critical flow experimental data
    Xie, Ziyu
    Wang, Chen
    Wu, Xu
    [J]. International Journal of Heat and Mass Transfer, 2025, 239
  • [3] A ROBUST ACTIVE SHAPE MODEL USING AN EXPECTATION-MAXIMIZATION FRAMEWORK
    Santiago, Carlos
    Nascimento, Jacinto C.
    Marques, Jorge S.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 6076 - 6080
  • [4] Modal identification of structures from input/output data using the expectation-maximization algorithm and uncertainty quantification by mean of the bootstrap
    Cara, Javier
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2019, 26 (01):
  • [5] Estimation of physical parameters under location uncertainty using an ensemble2- expectation-maximization algorithm
    Yang, Yin
    Memin, Etienne
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2019, 145 (719) : 418 - 433
  • [6] Identification of Thermal Model of Power Module Using Expectation-Maximization Algorithm
    Sevcik, Jakub
    Smidl, Vaclav
    Votava, Martin
    [J]. 45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 119 - 125
  • [7] Inverse uncertainty quantification of reactor simulations under the Bayesian framework using surrogate models constructed by polynomial chaos expansion
    Wu, Xu
    Kozlowski, Tomasz
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2017, 313 : 29 - 52
  • [8] Effect of mesh refinement on the estimation of model input parameters using Inverse Uncertainty Quantification
    Abu Saleem, Rabie A.
    Kozlowski, Tomasz
    [J]. ANNALS OF NUCLEAR ENERGY, 2019, 132 : 271 - 276
  • [9] UNCERTAINTY QUANTIFICATION OF EDWARDS HIGH-PRESSURE PIPE BEHAVIOR USING COMPLEX SYSTEM THERMAL-HYDRAULICS CODES
    Kaleibar, Mojtaba Raheli
    Pourgol-Mohammad, Mohammad
    Saray, Rahim Khoshbakhti
    Hoseyni, Seyed Mohsen
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 4B, 2019,
  • [10] Estimation of probability Density Functions for model input parameters using inverse uncertainty quantification with bias terms
    Abu Saleem, Rabie A.
    Kozlowski, Tomasz
    [J]. ANNALS OF NUCLEAR ENERGY, 2019, 133 : 1 - 8