Model Extraction Attacks and Defenses on Cloud-Based Machine Learning Models

被引:28
|
作者
Gong, Xueluan [1 ]
Wang, Qian [2 ]
Chen, Yanjiao [3 ]
Yang, Wang [4 ]
Jiang, Xinchang [1 ]
机构
[1] Wuhan Univ, Comp Sci, Wuhan, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
[3] Wuhan Univ, Wuhan, Peoples R China
[4] Wuhan Univ, Cyber Sci & Engn, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Computational modeling; Training data; Machine learning; Speech recognition; Propulsion; Internet; Security;
D O I
10.1109/MCOM.001.2000196
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine learning models have achieved state-of-the-art performance in various fields, from image classification to speech recognition. However, such models are trained with a large amount of sensitive training data, and are typically computationally expensive to build. As a result, many cloud providers (e.g., Google) have launched machine-learning-as-a-service, which helps clients benefit from the sophisticated cloud-based machine learning models via accessing public APIs. Such a business paradigm significantly expedites and simplifies the development circles. Unfortunately, the commercial value of such cloud-based machine learning models motivates attackers to conduct model extraction attacks for free use or as a springboard to conduct other attacks (e.g., craft adversarial examples in black-box settings). In this article, we conduct a thorough investigation of existing approaches to model extraction attacks and defenses on cloud-based models. We classify the state-of-the-art attack schemes into two categories based on whether the attacker aims to steal the property (i.e., parameters, hyperparameters, and architecture) or the functionality of the model. We also categorize defending schemes into two groups based on whether the scheme relies on output disturbance or query observation. We not only present a detailed survey of each method, but also demonstrate the comparison of both attack and defense approaches via experiments. We highlight several future directions in both model extraction attacks and its defenses, which shed light on possible avenues for further studies.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [1] Cloud-based DDoS Attacks and Defenses
    Darwish, Marwan
    Ouda, Abdelkader
    Capretz, Luiz Fernando
    INTERNATIONAL CONFERENCE ON INFORMATION SOCIETY (I-SOCIETY 2013), 2013, : 67 - 71
  • [2] Detecting Cloud-Based Phishing Attacks by Combining Deep Learning Models
    Jha, Birendra
    Atre, Medha
    Rao, Ashwini
    2022 IEEE 4TH INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS, AND APPLICATIONS, TPS-ISA, 2022, : 130 - 139
  • [3] Cloud-Based Machine Learning Models as Covert Communication Channels
    Krauss, Torsten
    Stang, Jasper
    Dmitrienko, Alexandra
    PROCEEDINGS OF THE 19TH ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, ACM ASIACCS 2024, 2024, : 141 - 157
  • [4] Guarding the Cloud: An Effective Detection of Cloud-Based Cyber Attacks using Machine Learning Algorithms
    Rexha, Blerim
    Thaqi, Rrezearta
    Mazrekaj, Artan
    Vishi, Kamer
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (18) : 158 - 174
  • [5] A survey on privacy inference attacks and defenses in cloud-based Deep Neural Network
    Zhang, Xiaoyu
    Chen, Chao
    Xie, Yi
    Chen, Xiaofeng
    Zhang, Jun
    Xiang, Yang
    COMPUTER STANDARDS & INTERFACES, 2023, 83
  • [6] Attacks and Defenses towards Machine Learning Based Systems
    Yu, Yingchao
    Liu, Xueyong
    Chen, Zuoning
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
  • [7] ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models
    Salem, Ahmed
    Zhang, Yang
    Humbert, Mathias
    Berrang, Pascal
    Fritz, Mario
    Backes, Michael
    26TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2019), 2019,
  • [8] Privacy Attacks and Defenses in Machine Learning: A Survey
    Liu, Wei
    Han, Xun
    He, Meiling
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL III, CENET 2023, 2024, 1127 : 413 - 422
  • [9] A Cloud-Based Framework for Machine Learning Workloads and Applications
    Lopez Garcia, Alvaro
    Marco De Lucas, Jesus
    Antonacci, Marica
    Zu Castell, Wolfgang
    David, Mario
    Hardt, Marcus
    Lloret Iglesias, Lara
    Molto, German
    Plociennik, Marcin
    Viet Tran
    Alic, Andy S.
    Caballer, Miguel
    Campos Plasencia, Isabel
    Costantini, Alessandro
    Dlugolinsky, Stefan
    Duma, Doina Cristina
    Donvito, Giacinto
    Gomes, Jorge
    Heredia Cacha, Ignacio
    Ito, Keiichi
    Kozlov, Valentin Y.
    Giang Nguyen
    Orviz Fernandez, Pablo
    SUstr, Zdenek
    Wolniewicz, Pawel
    IEEE ACCESS, 2020, 8 (08): : 18681 - 18692
  • [10] Survey on Privacy Attacks and Defenses in Machine Learning
    Liu R.-X.
    Chen H.
    Guo R.-Y.
    Zhao D.
    Liang W.-J.
    Li C.-P.
    Chen, Hong (chong@ruc.edu.cn), 1600, Chinese Academy of Sciences (31): : 866 - 892