Enhancing performance of a computed tomography perfusion software for improved prediction of final infarct volume in acute ischemic stroke patients

被引:9
|
作者
Rava, Ryan A. [1 ,2 ]
Snyder, Kenneth, V [2 ,3 ]
Mokin, Maxim [4 ]
Waqas, Muhammad [2 ,3 ]
Podgorsak, Alexander R. [1 ,2 ,5 ]
Allman, Ariana B. [1 ,2 ]
Senko, Jillian [1 ,2 ]
Bhurwani, Mohammad Mahdi Shiraz [1 ,2 ]
Hoi, Yiemeng [6 ]
Davies, Jason M. [2 ,3 ,7 ]
Levy, Elad, I [2 ,3 ]
Siddiqui, Adnan H. [2 ,3 ]
Ionita, Ciprian N. [1 ,2 ,3 ,5 ]
机构
[1] SUNY Buffalo, Dept Biomed Engn, 875 Ellicott St, Buffalo, NY 14203 USA
[2] Canon Stroke & Vasc Res Ctr, Buffalo, NY USA
[3] SUNY Buffalo, Dept Neurosurg, Buffalo, NY USA
[4] Univ S Florida, Dept Neurosurg, Tampa, FL 33620 USA
[5] SUNY Buffalo, Dept Med Phys, Buffalo, NY USA
[6] Canon Med Syst USA Inc, Tustin, CA USA
[7] SUNY Buffalo, Dept Bioinformat, Buffalo, NY USA
来源
NEURORADIOLOGY JOURNAL | 2021年 / 34卷 / 03期
关键词
Brain; CT perfusion; ischemic stroke;
D O I
10.1177/1971400920988668
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Computed tomography perfusion (CTP) is crucial for acute ischemic stroke (AIS) patient diagnosis. To improve infarct prediction, enhanced image processing and automated parameter selection have been implemented in Vital Images' new CTP + software. We compared CTP + with its previous version, commercially available software (RAPID and Sphere), and follow-up diffusion-weighted imaging (DWI). Data from 191 AIS patients between March 2019 and January 2020 was retrospectively collected and allocated into endovascular intervention (n = 81) and conservative treatment (n=110) cohorts. Intervention patients were treated for large vessel occlusion, underwent mechanical thrombectomy, and achieved successful reperfusion of thrombolysis in cerebral infarction 2b/2c/3. Conservative treatment patients suffered large or small vessel occlusion and did not receive intravenous thrombolysis or mechanical thrombectomy. Infarct and penumbra were assessed using intervention and conservative treatment patients, respectively. Infarct and penumbra volumes were segmented from CTP+ and compared with 24-h DWI along with RAPID, Sphere, and Vitrea. Mean infarct differences (95% confidence intervals) and Spearman correlation coefficients (SCCs) between DWI and each CTP software product for intervention patients are: CTP+ = (5.8 +/- 5.9 ml, 0.62), RAPID = (10.0 +/- 5.2 ml, 0.73), Sphere = (3.0 +/- 6.0 ml, 0.56), Vitrea = (7.2 +/- 4.9 ml, 0.66). For conservative treatment patients, mean infarct differences and SCCs are: CTP+ (-8.0 +/- 5.4 ml, 0.64), RAPID = (-25.6 +/- 11.5 ml, 0.60), Sphere = (-25.6 +/- 8.0 ml, 0.66), Vitrea = (1.3 +/- 4.0 ml, 0.72). CTP+ performed similarly to RAPID and Sphere in addition to its semi-automated predecessor, Vitrea, when assessing intervention patient infarct volumes. For conservative treatment patients, CTP+ outperformed RAPID and Sphere in assessing penumbra. Semi-automated Vitrea remains the most accurate in assessing penumbra, but CTP+ provides an improved workflow from its predecessor.
引用
收藏
页码:222 / 237
页数:16
相关论文
共 50 条
  • [1] Incremental Value of Computed Tomography Perfusion for Final Infarct Prediction in Acute Ischemic Cerebellar Stroke
    Fabritius, Matthias P.
    Reidler, Paul
    Froelich, Matthias F.
    Rotkopf, Lukas T.
    Liebig, Thomas
    Kellert, Lars
    Feil, Katharina
    Tiedt, Steffen
    Kazmierczak, Philipp M.
    Thierfelder, Kolja M.
    Puhr-Westerheide, Daniel
    Kunz, Wolfgang G.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2019, 8 (21):
  • [2] Comparison of two computed tomography perfusion post-processing software to assess infarct volume in patients with acute ischemic stroke
    Liu, Jiayang
    Wang, Jingjie
    Wu, Jiajing
    Gu, Sirun
    Yao, Yunzhuo
    Li, Jing
    Li, Yongmei
    Ren, Huanhuan
    Luo, Tianyou
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [3] Perfusion computed tomography: Prediction of final infarct extent and stroke outcome
    Parsons, MW
    Pepper, EM
    Chan, V
    Siddique, S
    Rajaratnam, S
    Bateman, GA
    Levi, CR
    ANNALS OF NEUROLOGY, 2005, 58 (05) : 672 - 679
  • [4] Assessment of computed tomography perfusion software in predicting spatial location and volume of infarct in acute ischemic stroke patients: a comparison of Sphere, Vitrea, and RAPID
    Rava, Ryan A.
    Snyder, Kenneth, V
    Mokin, Maxim
    Waqas, Muhammad
    Zhang, Xiaoliang
    Podgorsak, Alexander R.
    Allman, Ariana B.
    Senko, Jillian
    Shiraz Bhurwani, Mohammad Mahdi
    Hoi, Yiemeng
    Davies, Jason M.
    Levy, Elad, I
    Siddiqui, Adnan H.
    Ionita, Ciprian N.
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2021, 13 (02) : 130 - 135
  • [5] Perfusion Computed Tomography in Acute Ischemic Stroke
    Heit, Jeremy J.
    Sussman, Eric S.
    Wintermark, Max
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2019, 57 (06) : 1109 - +
  • [6] Value of Perfusion Computed Tomography in Acute Ischemic Stroke: Diagnosis of Infarct Core and Penumbra
    Pan, Jiawei
    Zhang, Jun
    Huang, Weiyuan
    Cheng, Xin
    Ling, Yifeng
    Dong, Qiang
    Geng, Daoying
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2013, 37 (05) : 645 - 649
  • [7] Automated prediction of final infarct volume in patients with large-vessel occlusion acute ischemic stroke
    Abdelkhaleq, Rania
    Kim, Youngran
    Khose, Swapnil
    Kan, Peter
    Salazar-Marioni, Sergio
    Giancardo, Luca
    Sheth, Sunil A.
    NEUROSURGICAL FOCUS, 2021, 51 (01) : 1 - 5
  • [8] Volumetric and Spatial Accuracy of Computed Tomography Perfusion Estimated Ischemic Core Volume in Patients With Acute Ischemic Stroke
    Hoving, Jan W.
    Marquering, Henk A.
    Majoie, Charles B. L. M.
    Yassi, Nawaf
    Sharma, Gagan
    Liebeskind, David S.
    van der Lugt, Aad
    Roos, Yvo B.
    van Zwam, Wim
    van Oostenbrugge, Robert J.
    Goyal, Mayank
    Saver, Jeffrey L.
    Jovin, Tudor G.
    Albers, Gregory W.
    Davalos, Antoni
    Hill, Michael D.
    Demchuk, Andrew M.
    Bracard, Serge
    Guillemin, Francis
    Muir, Keith W.
    White, Philip
    Mitchell, Peter J.
    Donnan, Geoffrey A.
    Davis, Stephen M.
    Campbell, Bruce C. V.
    STROKE, 2018, 49 (10) : 2368 - 2375
  • [9] Comparison of Automated CT Perfusion Software for Prediction of Final Infarct Volume
    Pisani, Leonardo
    Camara, Catarina Perry
    Mohammaden, Mahmoud
    Rodrigues, Gabriel Martins
    Bouslama, Mehdi
    Liberato, Bernardo B.
    Bianchi, Nicolas A.
    Peterson, Ryan
    Prater, Adam
    Al-Bayati, Alhamza
    Haussen, Diogo C.
    Frankel, Michael
    Nogueira, Raul
    STROKE, 2020, 51
  • [10] CT Brain Perfusion in the Prediction of Final Infarct Volume: A Prospective Study of Different Software Settings for Acute Ischemic Core Calculation
    Kremenova, Karin
    Lukavsky, Jiri
    Holesta, Michal
    Peisker, Tomas
    Lauer, David
    Weichet, Jiri
    Malikova, Hana
    DIAGNOSTICS, 2022, 12 (10)