High-Throughput Deep Learning Microscopy Using Multi-Angle Super-Resolution

被引:1
|
作者
Zhang, Jizhou [1 ,2 ]
Xu, Tingfa [1 ,2 ]
Li, Xiangmin [1 ,2 ]
Zhang, Yizhou [1 ,2 ]
Chen, Yiwen [1 ,2 ]
Wang, Xin [1 ,2 ]
Wang, Shushan [1 ,2 ]
Wang, Chen [3 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] Chongqing Innovat Ctr, Beijing Inst Technol, Chongqing 401120, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215000, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2020年 / 12卷 / 02期
基金
中国国家自然科学基金;
关键词
High-throughput; deep learning; super-resolution; photo-realistic; WIDE-FIELD; PHASE RETRIEVAL; FOURIER; RECONSTRUCTION; IMAGE;
D O I
10.1109/JPHOT.2020.2977888
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Biomedical applications such as pathology and hematology expect microscopes with high space-bandwidth product (SBP) which is difficult to achieve with conventional microscope setup. By applying a deep neural network, we demonstrate a high spacebandwidth product microscopic technique termed multi-angle super-resolution microscopy (MASRM) to achieve high-resolution imaging with the low-magnification objective. We design a multiple-branch deep residual network which extracts high-frequency information and color information in obliquely-illuminated low-resolution input images and generates high-resolution output. To train our network, we build a well-registered dataset in which both low-resolution input and high-resolution target are real captured images. We carry out detailed experiments to demonstrate the effectiveness of MASRM and compare it with a computational imaging technique termed Fourier ptychographic microscopy (FPM). This data-driven technique unleashes the potential of traditional microscopes with low cost and has broad prospects in biomedical applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Integrated and correlative high-throughput and super-resolution microscopy
    Gunkel, Manuel
    Flottmann, Benjamin
    Heilemann, Mike
    Reymann, Jurgen
    Erfle, Holger
    HISTOCHEMISTRY AND CELL BIOLOGY, 2014, 141 (06) : 597 - 603
  • [2] Integrated and correlative high-throughput and super-resolution microscopy
    Manuel Gunkel
    Benjamin Flottmann
    Mike Heilemann
    Jürgen Reymann
    Holger Erfle
    Histochemistry and Cell Biology, 2014, 141 : 597 - 603
  • [3] High-Throughput Super-Resolution Microscopy for Revealing Molecular Architecture
    Manley, Suliana
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 6A - 6A
  • [4] Lensfree On-chip Tomographic Microscopy Employing Multi-angle Illumination and Pixel Super-resolution
    Isikman, Serhan O.
    Bishara, Waheb
    Ozcan, Aydogan
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2012, (66):
  • [5] Robust online image processing for high-throughput super-resolution localization microscopy
    Ma, Hongqiang
    Xu, Jianquan
    Liu, Yang
    ADVANCES IN MICROSCOPIC IMAGING II, 2019, 11076
  • [6] Deep learning for super-resolution localization microscopy
    Zhou, Tianyang
    Luo, Jianwen
    Liu, Xin
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VIII, 2018, 10820
  • [7] Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy
    Youhua Chen
    Wenjie Liu
    Zhimin Zhang
    Cheng Zheng
    Yujia Huang
    Ruizhi Cao
    Dazhao Zhu
    Liang Xu
    Meng Zhang
    Yu-Hui Zhang
    Jiannan Fan
    Luhong Jin
    Yingke Xu
    Cuifang Kuang
    Xu Liu
    Nature Communications, 9
  • [8] Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy
    Chen, Youhua
    Liu, Wenjie
    Zhang, Zhimin
    Zheng, Cheng
    Huang, Yujia
    Cao, Ruizhi
    Zhu, Dazhao
    Xu, Liang
    Zhang, Meng
    Zhang, Yu-Hui
    Fan, Jiannan
    Jin, Luhong
    Xu, Yingke
    Kuang, Cuifang
    Liu, Xu
    NATURE COMMUNICATIONS, 2018, 9
  • [9] Reductively Caged, Photoactivatable DNA-PAINT for High-Throughput Super-resolution Microscopy
    Jang, Soohyun
    Kim, Mingi
    Shim, Sang-Hee
    Advanced Materials, 2020, 59 (29) : 11856 - 11860
  • [10] Reductively Caged, Photoactivatable DNA-PAINT for High-Throughput Super-resolution Microscopy
    Jang, Soohyun
    Kim, Mingi
    Shim, Sang-Hee
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (29) : 11758 - 11762