A Compression Hashing Scheme for Large-scale Face Retrieval

被引:0
|
作者
Li, Jiayong [1 ]
Ng, Wing W. Y. [1 ]
Tian, Xing [1 ]
机构
[1] South China Univ Technol Guangdong, Dept Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
hashing; large scale face retrieval; compression scheme;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hashing method has the intrinsic problem that a long binary code yields better precision but requires a larger storage cost. Most of existing hashing methods aim to find an optimal code length to trade off the precision and storage. However, in reality, the scale of the face images is enormous and thus the storage burden is unimaginative heavy. We propose to apply a similarity-preserving compression scheme to existing unsupervised hashing methods, so as to reduce storage burden while maintaining a high precision. We employ two different lengths of code, including a long code with original length and a short code with length after m-time compression. The hash code for the query face preserves the original code length while the hash code for stored image is compressed with a ratio m to reduce storage cost. When performing face retrieval, the compressed hash code for the stored face is m-time repeatedly concentrated, in order to be compared with the long hash code for the query based on Hamming distance. Experimental results on large-scale retrieval demonstrate that the proposed compression scheme can be efficiently applied in existing methods and achieves both a high precision and a small storage space.
引用
收藏
页码:245 / 251
页数:7
相关论文
共 50 条
  • [1] Deep Hashing for Large-scale Image Retrieval
    Li Mengting
    Liu Jun
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 10940 - 10944
  • [2] Manhattan Hashing for Large-Scale Image Retrieval
    Kong, Weihao
    Li, Wu-Jun
    Guo, Minyi
    [J]. SIGIR 2012: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2012, : 45 - 54
  • [3] Large-scale image retrieval with Sparse Embedded Hashing
    Ding, Guiguang
    Zhou, Jile
    Guo, Yuchen
    Lin, Zijia
    Zhao, Sicheng
    Han, Jungong
    [J]. NEUROCOMPUTING, 2017, 257 : 24 - 36
  • [4] Large-scale image retrieval with supervised sparse hashing
    Xu, Yan
    Shen, Fumin
    Xu, Xing
    Gao, Lianli
    Wang, Yuan
    Tan, Xiao
    [J]. NEUROCOMPUTING, 2017, 229 : 45 - 53
  • [5] Neighborhood Discriminant Hashing for Large-Scale Image Retrieval
    Tang, Jinhui
    Li, Zechao
    Wang, Meng
    Zhao, Ruizhen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (09) : 2827 - 2840
  • [6] Unsupervised Multiview Distributed Hashing for Large-Scale Retrieval
    Shen, Xiaobo
    Tang, Yunpeng
    Zheng, Yuhui
    Yuan, Yun-Hao
    Sun, Quan-Sen
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8837 - 8848
  • [7] Supervised Distributed Hashing for Large-Scale Multimedia Retrieval
    Zhai, Deming
    Liu, Xianming
    Ji, Xiangyang
    Zhao, Debin
    Satoh, Shin'ichi
    Gao, Wen
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (03) : 675 - 686
  • [8] Cascaded Deep Hashing for Large-Scale Image Retrieval
    Lu, Jun
    Zhang, Li
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VI, 2018, 11306 : 419 - 429
  • [9] Distance variety preserving hashing for large-scale retrieval
    Zhai, Sheping
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (12):
  • [10] An Enhanced Deep Hashing Method for Large-Scale Image Retrieval
    Chen, Cong
    Tong, Weiqin
    Ding, Xuehai
    Zhi, Xiaoli
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2019, PT I, 2019, 11775 : 382 - 393