Water-Gas Shift Reaction to Capture Carbon Dioxide and Separate Hydrogen on Single-Walled Carbon Nanotubes

被引:13
|
作者
Peng, Xuan [2 ]
Vicent-Luna, Jose Manuel [1 ]
Jin, Qibing [2 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, Mat Simulat & Modelling, NL-5600 MB Eindhoven, Netherlands
[2] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dioxide capture; hydrogen separation; carbon nanotube; water-gas shift reaction; molecular simulation;
D O I
10.1021/acsami.1c00145
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In view of the increasingly severe global warming and ocean acidification caused by CO2 emissions, we report a new procedure, named "reactive separation", to capture CO2. We used advanced Monte Carlo and molecular dynamics methods to simulate the water-gas shift reaction in single-walled carbon nanotubes. We found that (11,11) carbon nanotubes with a diameter of 0.75 nm have the best ability to capture CO2 generated in the water-gas shift reaction. When the feed water-gas ratio is 1:1, the pressure is 3 MPa, and the temperature is 473 K, the storage capacity of CO2 reaches 2.18 mmol/g, the molar fraction of CO2 and H-2 inside the carbon nanotube is 0.87 and 0.09, respectively, the conversion of CO in the pore is as high as 97.6%, and the CO2/H-2 separation factor is 10.3. Therefore, utilizing the reaction and separation coupling effect of carbon nanotubes to adsorb and store the product CO2 formed in the water-gas shift reaction, while separating the generated clean energy gas H-2, is a promising strategy for developing novel CO2 capture technologies.
引用
收藏
页码:11026 / 11038
页数:13
相关论文
共 50 条
  • [1] Restricted adsorption of carbon dioxide gas in fluorinated single-walled carbon nanotubes
    Sekiya, Yuta
    Sugiyama, Hironori
    Sagisaka, Kento
    Kondo, Atsushi
    Hattori, Yoshiyuki
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2018, 26 (11) : 746 - 750
  • [2] Water gas shift reaction for hydrogen production and carbon dioxide capture: A review
    Chen, Wei-Hsin
    Chen, Chia-Yang
    APPLIED ENERGY, 2020, 258
  • [3] Single-walled carbon nanotubes as stationary phase in gas chromatographic separation and determination of argon, carbon dioxide and hydrogen
    Safavi, Afsaneh
    Maleki, Norooz
    Doroodmand, Mohammad Mandi
    ANALYTICA CHIMICA ACTA, 2010, 675 (02) : 207 - 212
  • [4] Interaction of water with single-walled carbon nanotubes: Reaction and adsorption
    Ellison, MD
    Good, AP
    Kinnaman, CS
    Padgett, NE
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (21): : 10640 - 10646
  • [5] Storage of hydrogen in single-walled carbon nanotubes
    A. C. Dillon
    K. M. Jones
    T. A. Bekkedahl
    C. H. Kiang
    D. S. Bethune
    M. J. Heben
    Nature, 1997, 386 : 377 - 379
  • [6] Storage of hydrogen in single-walled carbon nanotubes
    Dillon, AC
    Jones, KM
    Bekkedahl, TA
    Kiang, CH
    Bethune, DS
    Heben, MJ
    NATURE, 1997, 386 (6623) : 377 - 379
  • [7] Physisorption of hydrogen in single-walled carbon nanotubes
    Sudan, P
    Züttel, A
    Mauron, P
    Emmenegger, C
    Wenger, P
    Schlapbach, L
    CARBON, 2003, 41 (12) : 2377 - 2383
  • [8] Hydrogen storage in single-walled carbon nanotubes
    Lee, SM
    Lee, YH
    APPLIED PHYSICS LETTERS, 2000, 76 (20) : 2877 - 2879
  • [9] Hydrogen interaction with single-walled carbon nanotubes
    Yoshihara, Kumiko
    Ishida, Kazuhiro
    Wongwiriyapan, Winadda
    Inoue, Satoshi
    Okabayashi, Yusuke
    Honda, Shin-ichi
    Nishimoto, Yoshihiro
    Kuwahara, Yuji
    Oura, Kenjiro
    Katayama, Mitsuhiro
    APPLIED PHYSICS EXPRESS, 2008, 1 (09) : 0940011 - 0940013
  • [10] Gas storage in single-walled carbon nanotubes
    Maniwa, Y
    Kumazawa, Y
    Saito, Y
    Tou, H
    Kataura, H
    Ishii, H
    Suzuki, S
    Achiba, Y
    Fujiwara, A
    Suematsu, H
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2000, 340 : 671 - 676