Classification of healthy, inter-ictal and seizure signal using various classification techniques

被引:9
|
作者
Choubey, Hemant [1 ]
Pandey, Alpana [1 ]
机构
[1] MANIT Bhopal, Dept Elect & Commun, Bhopal, Madhya Pradesh, India
关键词
electroencephalogram (EEG) signal; levenberg marquardt (LM) classifier; epileptic seizure detection; k-nearest neighbour (kNN); artificial neural network (ANN); variance;
D O I
10.3166/TS.35.75-84
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalography (EEG) is the study of brain electrical activity for different physiological state of the brain. The main purpose of this paper is to identify epileptical seizure signal from EEG signal through combinational classifier. Combinational classifier combine k-NN classifier with ANN classifier. k-NN classifier for- detection of Healthy and Inter-icial signal . then ANN classifier for the detection of Seizure signal. These three classifier works on same input values of Fractal Dimension called as Higuchi Fractal Dimension. Higuchi Fractal Dimension derived three parameters (1) Fractal Dimension, (2) Standard Deviation of Fractal Dimension and (3) Standard Deviation of scaling factor used as inputs of the k-NN classifier, ANN classifier and Combinational Classifier respectively for the classification of EEG signal and Detection of Seizure signal from EEG signal. The findings of this research on the basis of this three input statistical parameter value performance parameter like Accuracy, Sensitivity , and Selectivity calculated as 92.66%, 89% and 89% respectively and compared its performance with different statistical feature using other classifier.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [1] Classification of Normal, Ictal and Inter-ictal EEG via Direct Quadrature and Random Forest Tree
    Abdulhay, Enas
    Alafeef, Maha
    Abdelhay, Arwa
    Al-Bashir, Areen
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2017, 37 (06) : 843 - 857
  • [2] Classification of Normal, Ictal and Inter-ictal EEG via Direct Quadrature and Random Forest Tree
    Enas Abdulhay
    Maha Alafeef
    Arwa Abdelhay
    Areen Al-Bashir
    Journal of Medical and Biological Engineering, 2017, 37 : 843 - 857
  • [3] Correction to: Classification of Normal, Ictal and Inter-ictal EEG via Direct Quadrature and Random Forest Tree
    Enas Abdulhay
    Maha Alafeef
    Arwa Abdelhay
    Areen Al-Bashir
    Journal of Medical and Biological Engineering, 2020, 40 : 320 - 320
  • [4] Inter-Ictal Seizure Onset Zone Localization Using Unsupervised Clustering and Bayesian Filtering
    Varatharajah, Yogatheesan
    Berry, Brent M.
    Kalbarczyk, Zbigniew T.
    Brinkmann, Benjamin H.
    Worrell, Gregory A.
    Iyer, Ravishankar K.
    2017 8TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2017, : 533 - 539
  • [5] Classification of inter-ictal and ictal EEGs using multi-basis MODWPT, dimensionality reduction algorithms and LS-SVM: A comparative study
    Zhang, Tao
    Chen, Wanzhong
    Li, Mingyang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 47 : 240 - 251
  • [6] ECG Signal Classification Using Various Machine Learning Techniques
    Celin, S.
    Vasanth, K.
    JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (12)
  • [7] ECG Signal Classification Using Various Machine Learning Techniques
    S Celin
    K. Vasanth
    Journal of Medical Systems, 2018, 42
  • [8] Classification of Normal, Ictal and Inter-ictal EEG via Direct Quadrature and Random Forest Tree (vol 37, pg 843, 2017)
    Abdulhay, Enas
    Alafeef, Maha
    Abdelhay, Arwa
    Al-Bashir, Areen
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2020, 40 (02) : 320 - 320
  • [9] A Recent Investigation on Detection and Classification of Epileptic Seizure Techniques Using EEG Signal
    Saminu, Sani
    Xu, Guizhi
    Shuai, Zhang
    Abd El Kader, Isselmou
    Jabire, Adamu Halilu
    Ahmed, Yusuf Kola
    Karaye, Ibrahim Abdullahi
    Ahmad, Isah Salim
    BRAIN SCIENCES, 2021, 11 (05)
  • [10] Inter-ictal spike detection using a database of smart templates
    Lodder, Shaun S.
    Askamp, Jessica
    van Putten, Michel J. A. M.
    CLINICAL NEUROPHYSIOLOGY, 2013, 124 (12) : 2328 - 2335