A degree sum condition on Hamiltonian cycles in balanced 3-partite graphs

被引:3
|
作者
Yokomura, K [1 ]
机构
[1] TOKAI UNIV,DEPT MATH SCI,HIRATSUKA,KANAGAWA 25912,JAPAN
关键词
D O I
10.1016/S0012-365X(97)81841-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-partite graph in which each partite set has the same number of vertices is said to be a balanced k-partite graph. We show that a balanced 3-partite graph G = (V-1 boolean OR V-2 boolean OR V-3, E) (\V-i\ = n), is hamiltonian, if for any two nonadjacent vertices u is an element of V-i and v is an element of V-j (1 less than or equal to i < j less than or equal to 3) of G, the following condition is satisfied: \N(u) boolean AND V-j\ + \N(v) boolean AND V-i\ greater than or equal to n + 1. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:293 / 297
页数:5
相关论文
共 50 条
  • [1] On degree conditions of semi-balanced 3-partite Hamiltonian graphs
    Yokomura, Kuniharu
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 84 : 49 - 55
  • [2] Degree sum condition on distance 2 vertices for hamiltonian cycles in balanced bipartite graphs
    Wang, Ruixia
    Zhou, Zhiyi
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [3] Density of balanced 3-partite graphs without 3-cycles or 4-cycles
    Lv, Zequn
    Lu, Mei
    Fang, Chunqiu
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):
  • [4] On Hamiltonian cycles in balanced k-partite graphs
    DeBiasio, Louis
    Spanier, Nicholas
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [5] SIGNED DEGREE SETS IN SIGNED 3-PARTITE GRAPHS
    Pirzada, S.
    Dar, F. A.
    MATEMATICKI VESNIK, 2007, 59 (03): : 121 - 124
  • [6] A note on 3-partite graphs without 4-cycles
    Lv, Zequn
    Lu, Mei
    Fang, Chunqiu
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (10) : 753 - 757
  • [7] Codegree threshold for tiling balanced complete 3-partite 3-graphs and generalized 4-cycles
    Liu, Boyuan
    Hou, Xinmin
    Ma, Yue
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 21
  • [8] Implicit degree sum condition for hamiltonian cycles
    Huang, Xing
    ARS COMBINATORIA, 2017, 130 : 71 - 78
  • [9] On cycles in regular 3-partite tournaments
    Volkmann, L
    DISCRETE MATHEMATICS, 2006, 306 (12) : 1198 - 1206
  • [10] A degree sum condition for graphs to be prism hamiltonian
    Ozeki, Kenta
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4266 - 4269