Urban Ultrafine Particle Exposure Assessment with Land-Use Regression: Influence of Sampling Strategy

被引:28
|
作者
Saha, Provat K. [1 ,2 ]
Li, Hugh Z. [1 ]
Apte, Joshua S. [3 ]
Robinson, Allen L. [1 ,2 ]
Presto, Albert A. [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[3] Univ Texas Austin, Dept Civil Architectural & Environm Engn, Austin, TX 78712 USA
关键词
AIR-POLLUTION EXPOSURE; BLACK CARBON; PARTICULATE MATTER; SPATIAL VARIATION; PM2.5; ABSORBENCY; MODELS; MOBILE; ROAD; PMCOARSE; NUMBER;
D O I
10.1021/acs.est.9b02086
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sampling strategies in the collection of ultrafine particle (UFP) data to develop land-use regression (LUR) models can strongly influence the resulting exposure estimates. Here, we systematically examine how much sampling is needed to develop robust and stable UFP LUR models. To address this question, we collected 3-6 weeks of continuous measurements of UFP concentrations at 32 sites in Pittsburgh, Pennsylvania covering a wide range of urban land-use attributes. Through systematic subsampling of this data set, we evaluate the performance of hundreds of LUR models with varying numbers of sampling days and daily sampling durations. Our base LUR model derived from wintertime average concentrations explained about 80% of the spatial variability in the data (adjusted R-2 similar to 0.8). The performance of the LUR models degrades with decreasing number of sampling days and sampling duration per day. For our data set, 1-3 h of sampling per day for 10-15 days provided UFP concentration estimates comparable to models derived from the entire data set. Small numbers of repeated sampling per site (1-3 days) at short duration (similar to 15-60 min per day) result in poor performance (R-2 < 0.5), similar to previous UFP LUR models. This study provides guidelines for the design of future measurement campaigns and monitoring networks to generate robust UFP LUR models for exposure assessments. Further study in other locations with more sites is needed to evaluate these guidelines over a broader range of conditions.
引用
收藏
页码:7326 / 7336
页数:11
相关论文
共 50 条
  • [1] High spatial resolution land-use regression model for urban ultrafine particle exposure assessment in Shanghai, China
    Ge, Yihui
    Fu, Qingyan
    Yi, Min
    Chao, Yuan
    Lei, Xiaoning
    Xu, Xueyi
    Yang, Zhenchun
    Hu, Jianlin
    Kan, Haidong
    Cai, Jing
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 816
  • [2] Development of land-use regression models for exposure assessment to ultrafine particles in Rome, Italy
    Cattani, Giorgio
    Gaeta, Alessandra
    di Bucchianico, Alessandro Di Menno
    De Santis, Antonella
    Gaddi, Raffaela
    Cusano, Mariacarmela
    Ancona, Carla
    Badaloni, Chiara
    Forastiere, Francesco
    Gariazzo, Claudio
    Sozzi, Roberto
    Inglessis, Marco
    Silibello, Camillo
    Salvatori, Elisabetta
    Manes, Fausto
    Cesaroni, Giulia
    [J]. ATMOSPHERIC ENVIRONMENT, 2017, 156 : 52 - 60
  • [3] Development of a land-use regression model for ultrafine particles in Toronto, Canada
    Sabaliauskas, Kelly
    Jeong, Cheol-Heon
    Yao, Xiaohong
    Reali, Christopher
    Sun, Tim
    Evans, Greg J.
    [J]. ATMOSPHERIC ENVIRONMENT, 2015, 110 : 84 - 92
  • [4] Robustness of intra urban land-use regression models for ultrafine particles and black carbon based on mobile monitoring
    Kerckhoffs, Jules
    Hoek, Gerard
    Vlaanderen, Jelle
    van Nunen, Erik
    Messier, Kyle
    Brunekreef, Bert
    Gulliver, John
    Vermeulen, Roel
    [J]. ENVIRONMENTAL RESEARCH, 2017, 159 : 500 - 508
  • [5] Development and transferability of ultrafine particle land use regression models in London
    Yang, Zhenchun
    Freni-Sterrantino, Anna
    Fuller, Gary W.
    Gulliver, John
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 740
  • [6] US urban land-use reform: a strategy for energy sufficiency
    Subin, Zachary m.
    Lombardi, Jackie
    Muralidharan, Raghav
    Korn, Jacob
    Malik, Jeetika
    Pullen, Tyler
    Wei, Max
    Hong, Tianzhen
    [J]. BUILDINGS & CITIES, 2024, 5 (01): : 400 - 417
  • [7] Research on Urban Development Strategy Based on Urban Land-use Efficiency in China
    Zhang Zhanlu
    Ren Yeqian
    Yan Yaxin
    [J]. PROCEEDINGS OF 2010 INTERNATIONAL CONFERENCE ON REGIONAL MANAGEMENT SCIENCE AND ENGINEERING, 2010, : 253 - 258
  • [8] A national satellite-based land-use regression model for air pollution exposure assessment in Australia
    Knibbs, Luke D.
    Hewson, Michael G.
    Bechle, Matthew J.
    Marshall, Julian D.
    Barnett, Adrian G.
    [J]. ENVIRONMENTAL RESEARCH, 2014, 135 : 204 - 211
  • [9] Spatial distribution of ultrafine particles in urban settings: A land use regression model
    Rivera, Marcela
    Basagana, Xavier
    Aguilera, Inmaculada
    Agis, David
    Bouso, Laura
    Foraster, Maria
    Medina-Ramon, Mercedes
    Pey, Jorge
    Kuenzli, Nino
    Hoek, Gerard
    [J]. ATMOSPHERIC ENVIRONMENT, 2012, 54 : 657 - 666
  • [10] URBAN LAND-USE IN GHANA
    ALBERT, F
    [J]. EKISTICS-THE PROBLEMS AND SCIENCE OF HUMAN SETTLEMENTS, 1976, 42 (249): : 109 - 117