A study of the local convergence of a fifth order iterative method

被引:16
|
作者
Singh, Sukjith [1 ]
Martinez, Eulalia [2 ]
Maroju, P. [3 ]
Behl, Ramandeep [4 ]
机构
[1] Dr BR Ambedkar Natl Inst Technol Jalandhar, Jalandhar, Punjab, India
[2] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Valencia, Spain
[3] Amrita Vishwa Vidhyapeetham, Dept Math, Amrita Sch Engn, Coimbatore, Tamil Nadu, India
[4] King Abdulaziz Univ, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
来源
关键词
Nonlinear equations; iterative methods; local convergence; divided differences; NONLINEAR EQUATIONS; SOLVING SYSTEMS; ORDER; DOMAIN;
D O I
10.1007/s13226-020-0409-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a local convergence study of a fifth order iterative method to approximate a locally unique root of nonlinear equations. The analysis is discussed under the assumption that first order Frechet derivative satisfies the Lipschitz continuity condition. Moreover, we consider the derivative free method that obtained through approximating the derivative with divided difference along with the local convergence study. Finally, we provide computable radii and error bounds based on the Lipschitz constant for both cases. Some of the numerical examples are worked out and compared the results with existing methods.
引用
收藏
页码:439 / 455
页数:17
相关论文
共 50 条
  • [1] A study of the local convergence of a fifth order iterative method
    Sukjith Singh
    Eulalia Martínez
    P. Maroju
    Ramandeep Behl
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 439 - 455
  • [2] On the local convergence of a fifth-order iterative method in Banach spaces
    Cordero, A.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Torregrosa, J. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 396 - 403
  • [3] ON THE CONVERGENCE OF A FIFTH-ORDER ITERATIVE METHOD IN BANACH SPACES
    Gagandeep
    Sharma, Rajni
    Argyros, I. K.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 13 (01): : 16 - 40
  • [4] Local Convergence Study for an Iterative Scheme with a High Order of Convergence
    Martinez, Eulalia
    Ledesma, Arleen
    ALGORITHMS, 2024, 17 (11)
  • [5] Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces
    P. Maroju
    Á. A. Magreñán
    Í. Sarría
    Abhimanyu Kumar
    Journal of Mathematical Chemistry, 2020, 58 : 686 - 705
  • [6] Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces
    Maroju, P.
    Magrenan, A. A.
    Sarria, I.
    Kumar, Abhimanyu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (03) : 686 - 705
  • [7] Complete study of local convergence and basin of attraction of sixth-order iterative method
    Devi, Kasmita
    Maroju, Prashanth
    AIMS MATHEMATICS, 2023, 8 (09): : 21191 - 21207
  • [8] Global convergence domains for an efficient fifth order iterative scheme
    Yadav, Sonia
    Singh, Sukhjit
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (10) : 2176 - 2191
  • [9] Global convergence domains for an efficient fifth order iterative scheme
    Sonia Yadav
    Sukhjit Singh
    Journal of Mathematical Chemistry, 2023, 61 : 2176 - 2191
  • [10] Local convergence study of tenth-order iterative method in Banach spaces with basin of attraction
    Devi, Kasmita
    Maroju, Prashanth
    AIMS MATHEMATICS, 2024, 9 (03): : 6648 - 6667