Deformations of dihedral representations

被引:11
|
作者
Heusener, M [1 ]
Klassen, E [1 ]
机构
[1] FLORIDA STATE UNIV,DEPT MATH,TALLAHASSEE,FL 32306
关键词
knot groups; group representations; SU2(C);
D O I
10.1090/S0002-9939-97-04195-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
G. Burde proved (1990) that the SU2(C) representation space of two-bridge knot groups is one-dimensional. The same holds for all torus knot groups. The aim of this note is to prove the following: Given a knot k subset of S-3 we denote by (C) over cap(2) its twofold branched covering space. Assume that there is a prime number p such that H-1((C) over cap(2), Z(p)) congruent to Z(p). Then there exist representations of the knot group onto the binary dihedral group D-p subset of SU2(C) and these representations are smooth points on a one-dimensional curve of representations into SU2(C).
引用
收藏
页码:3039 / 3047
页数:9
相关论文
共 50 条
  • [1] Dihedral universal deformations
    Deo, Shaunak V.
    Wiese, Gabor
    [J]. RESEARCH IN NUMBER THEORY, 2020, 6 (03)
  • [2] Dihedral universal deformations
    Shaunak V. Deo
    Gabor Wiese
    [J]. Research in Number Theory, 2020, 6
  • [3] INFINITESIMAL DEFORMATIONS OF DIHEDRAL SINGULARITIES
    BEHNKE, K
    RIEMENSCHNEIDER, O
    [J]. MANUSCRIPTA MATHEMATICA, 1977, 20 (04) : 377 - 400
  • [4] DEFORMATIONS OF REPRESENTATIONS
    PINCZON, G
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1977, 1 (06) : 535 - 544
  • [5] Deformations of representations
    Procesi, C
    [J]. METHODS IN RING THEORY: PROCEEDINGS OF THE TRENTO CONFERENCE, 1998, 198 : 247 - 276
  • [6] DIHEDRAL SINGULARITIES - INVARIANTS, EQUATIONS AND INFINITESIMAL DEFORMATIONS
    RIEMENSCHNEIDER, O
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (05) : 745 - 747
  • [7] Backscattering by a dihedral corner reflector with surface deformations
    Corona, P
    Gennarelli, C
    Pelosi, G
    Riccio, G
    Toso, G
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2000, 14 (06) : 833 - 851
  • [8] Modular forms and representations of the dihedral group
    Voskresenskaya, GV
    [J]. MATHEMATICAL NOTES, 1998, 63 (1-2) : 115 - 118
  • [9] DIHEDRAL ARTIN REPRESENTATIONS AND CM FIELDS
    Rohrlich, David E.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (08) : 3183 - 3196
  • [10] Remarks on automorphy of residually dihedral representations
    Kalyanswamy, Sudesh
    [J]. MATHEMATICAL RESEARCH LETTERS, 2018, 25 (04) : 1285 - 1304