Instability of Stationary Solutions of Reaction-Diffusion-Equations on Graphs

被引:12
|
作者
von Below, Joachim [1 ]
Lubary, Jose A. [2 ]
机构
[1] Univ Lille Nord France ULCO, LMPA Joseph Liouville ULCO, FR CNRS Math 2956, F-62228 Calais, France
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 2, ES-08034 Barcelona, Spain
关键词
Reaction-diffusion-equations; metric graphs; networks; attractors; stability; double-well potential;
D O I
10.1007/s00025-014-0429-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonexistence of stable stationary nonconstant solutions of reaction-diffusion-equations partial derivative(t)u(j) = partial derivative(j)(a(j)(x(j))partial derivative(j)u(j)) + f(j)(u(j)) on the edges of a finite (topological) graph is investigated under continuity and consistent Kirchhoff flow conditions at all vertices of the graph. In particular, it is shown that in the balanced autonomous case f(u) = u - u(3), no such stable stationary solution can exist on any finite graph. Finally, the balanced autonomous case is discussed on the two-sided unbounded path with equal edge lengths.
引用
收藏
页码:171 / 201
页数:31
相关论文
共 50 条