Prediction of physical protein-protein interactions

被引:78
|
作者
Szilágyi, A [1 ]
Grimm, V [1 ]
Arakaki, AK [1 ]
Skolnick, J [1 ]
机构
[1] SUNY Buffalo, Ctr Excellence Bioinformat, Buffalo, NY 14203 USA
关键词
D O I
10.1088/1478-3975/2/2/S01
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many essential cellular processes such as signal transduction, transport, cellular motion and most regulatory mechanisms are mediated by protein-protein interactions. In recent years, new experimental techniques have been developed to discover the protein-protein interaction networks of several organisms. However, the accuracy and coverage of these techniques have proven to be limited, and computational approaches remain essential both to assist in the design and validation of experimental studies and for the prediction of interaction partners and detailed structures of protein complexes. Here, we provide a critical overview of existing structure-independent and structure-based computational methods. Although these techniques have significantly advanced in the past few years, we find that most of them are still in their infancy. We also provide an overview of experimental techniques for the detection of protein-protein interactions. Although the developments are promising, false positive and false negative results are common, and reliable detection is possible only by taking a consensus of different experimental approaches. The shortcomings of experimental techniques affect both the further development and the fair evaluation of computational prediction methods. For an adequate comparative evaluation of prediction and high-throughput experimental methods, an appropriately large benchmark set of biophysically characterized protein complexes would be needed, but is sorely lacking.
引用
收藏
页码:S1 / S16
页数:16
相关论文
共 50 条
  • [1] Computational prediction of protein-protein interactions
    Skrabanek, Lucy
    Saini, Harpreet K.
    Bader, Gary D.
    Enright, Anton J.
    MOLECULAR BIOTECHNOLOGY, 2008, 38 (01) : 1 - 17
  • [2] Prediction and redesign of protein-protein interactions
    Lua, Rhonald C.
    Marciano, David C.
    Katsonis, Panagiotis
    Adikesavan, Anbu K.
    Wilkins, Angela D.
    Lichtarge, Olivier
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2014, 116 (2-3): : 194 - 202
  • [3] Prediction Protein-Protein Interactions with LSTM
    Tao, Zheng
    Yao, Jiahao
    Yuan, Chao
    Zhao, Ning
    Yang, Bin
    Chen, Baitong
    Bao, Wenzheng
    SIMULATION TOOLS AND TECHNIQUES, SIMUTOOLS 2021, 2022, 424 : 540 - 545
  • [4] Preface - Protein-protein interactions: principles and prediction
    Nussinov, R
    Tsai, CJ
    PHYSICAL BIOLOGY, 2005, 2 (02)
  • [5] Prediction of Protein-Protein Interactions Based on Domain
    Li, Xue
    Yang, Lifeng
    Zhang, Xiaopan
    Jiao, Xiong
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2019, 2019
  • [6] Prediction of Protein-Protein Interactions at Genome Scale
    Tuncbag, Nurcan
    Gursoy, Attila
    Nussinov, Ruth
    Keskin, Ozlem
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 386 - 386
  • [7] Computational Methods for the Prediction of Protein-Protein Interactions
    Xia, Jun-Feng
    Wang, Shu-Lin
    Lei, Ying-Ke
    PROTEIN AND PEPTIDE LETTERS, 2010, 17 (09): : 1069 - 1078
  • [8] Protein-Protein Interactions and Prediction: A Comprehensive Overview
    Sowmya, Gopichandran
    Ranganathan, Shoba
    PROTEIN AND PEPTIDE LETTERS, 2014, 21 (08): : 779 - 789
  • [9] Prediction of protein-protein interactions by docking methods
    Smith, GR
    Sternberg, MJE
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (01) : 28 - 35
  • [10] Computational Methods for the Prediction of Protein-Protein Interactions
    Guerra, Concettina
    Mina, Marco
    COMBINATORIAL IMAGE ANALYSIS, 2011, 6636 : 13 - 16