On Saint Venant's compatibility conditions and Poincare's lemma

被引:15
|
作者
Amrouche, Cherif
Ciarlet, Philippe G.
Gratie, Liliana
Kesavan, Srinivasan
机构
[1] Univ Pau & Pays Adour, Lab Math Appl, F-64000 Pau, France
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Liu Bie Ju Ctr Math Sci, Kowloon, Hong Kong, Peoples R China
[4] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
D O I
10.1016/j.crma.2006.03.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Saint Venant's theorem constitutes a classical characterization of smooth matrix fields as linearized strain tensor fields. This theorem has been extended to matrix fields with components in L-2 by the second author and P. Ciarlet, Jr. in 2005. One objective of this Note is to further extend this characterization to matrix fields whose components are only in H-1. Another objective is to demonstrate that Saint Venant's theorem is in fact nothing but the matrix analog of Poincare's lemma.
引用
收藏
页码:887 / 891
页数:5
相关论文
共 50 条
  • [1] Nonlinear Saint-Venant compatibility conditions for nonlinearly elastic plates
    Ciarlet, Philippe G.
    Mardare, Sorin
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (23-24) : 1297 - 1302
  • [2] Poincare's lemma on the Heisenberg group
    Calin, Ovidiu
    Chang, Der-Chen
    Hu, Jishan
    ADVANCES IN APPLIED MATHEMATICS, 2014, 60 : 90 - 102
  • [3] Saint Venant compatibility equations in curvilinear coordinates
    Ciarlet, Philippe G.
    Mardare, Cristinel
    Shen, Ming
    ANALYSIS AND APPLICATIONS, 2007, 5 (03) : 231 - 251
  • [4] An Application of Saint Venant's Theory to Volterra's Distortions
    Bochicchio, Ivana
    Laserra, Ettore
    Pecoraro, Massimo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [5] Saint Venant's estimates in anisotropic magnetohydrodynamics
    Borrelli A.
    Patria M.C.
    Annali dell’Università di Ferrara, 2001, 47 (1): : 145 - 167
  • [6] Saint Venant's heterogeneous beam theory
    Pecastaings, F., 1600, (10):
  • [7] Saint-Venant's problems for spring
    Ustinov, YA
    DOKLADY AKADEMII NAUK, 1995, 345 (05) : 621 - 623
  • [8] ON THE ASSUMPTION OF SAINT-VENANT’S PROBLEM
    王敏中
    AppliedMathematicsandMechanics(EnglishEdition), 1985, (01) : 87 - 92
  • [9] Zanaboni's treatment of Saint-Venant's principle
    Knops, R. J.
    Villaggio, Piero
    APPLICABLE ANALYSIS, 2012, 91 (02) : 345 - 370
  • [10] NONLINEAR SAINT-VENANT COMPATIBILITY CONDITIONS AND THE INTRINSIC APPROACH FOR NONLINEARLY ELASTIC PLATES
    Ciarlet, Philippe G.
    Mardare, Sorin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (12): : 2293 - 2321