Exact and approximation algorithms for clustering

被引:132
|
作者
Agarwal, PK [1 ]
Procopiuc, CM [1 ]
机构
[1] Duke Univ, Dept Comp Sci, Ctr Geometr Comp, Durham, NC 27708 USA
关键词
k-center clustering; capacitated clustering; approximation algorithms;
D O I
10.1007/s00453-001-0110-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we present an n(O(k1-1/d))-time algorithm for solving the k-center problem in R-d, under L-infinity- and L-2-metrics. The algorithm extends to other metrics, and to the discrete k-center problem. We also describe a simple (1 + epsilon)-approximation algorithm for the k-center problem, with running time O(n log k) + (k/epsilon)(O(k1-1/d)). Finally, we present an n(O(k1-1/d))-time algorithm for solving the L-capacitated k-center problem, provided that L = Omega(n/k(1-1/d)) or L = O(I).
引用
收藏
页码:201 / 226
页数:26
相关论文
共 50 条
  • [1] Exact and Approximation Algorithms for Clustering
    P. K. Agarwal
    C. M. Procopiuc
    [J]. Algorithmica, 2002, 33 : 201 - 226
  • [2] Approximation algorithms for stochastic clustering
    Harris, David G.
    Li, Shi
    Pensyl, Thomas
    Srinivasan, Aravind
    Khoa Trinh
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [3] Approximation algorithms for projective clustering
    Agarwal, PK
    Procopiuc, CM
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2003, 46 (02): : 115 - 139
  • [4] Approximation Algorithms for Tensor Clustering
    Jegelka, Stefanie
    Sra, Suvrit
    Banerjee, Arindam
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2009, 5809 : 368 - +
  • [5] Approximation algorithms for stochastic clustering
    Harris, David G.
    Li, Shi
    Pensyl, Thomas
    Srinivasan, Aravind
    Trinh, Khoa
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [6] Approximation algorithms for stochastic clustering
    Harris, David G.
    Li, Shi
    Pensyl, Thomas
    Srinivasan, Aravind
    Trinh, Khoa
    [J]. Journal of Machine Learning Research, 2019, 20
  • [7] Exact and approximation algorithms for the loader problem
    Chen, Feng
    Tang, Guochun
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON SERVICE OPERATIONS AND LOGISTICS, AND INFORMATICS (SOLI 2006), PROCEEDINGS, 2006, : 405 - +
  • [8] Are approximation algorithms for consensus clustering worthwhile?
    Bertolacci, Michael
    Wirth, Anthony
    [J]. PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 437 - 442
  • [9] Approximation algorithms for clustering with dynamic points
    Deng, Shichuan
    Li, Jian
    Rabani, Yuval
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2022, 130 : 43 - 70
  • [10] On parameterized approximation algorithms for balanced clustering
    Kong, Xiangyan
    Zhang, Zhen
    Feng, Qilong
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (01)