Change-point Analysis of Single-trial EEG of Auditory and Visual Oddball Tasks

被引:0
|
作者
Dizaji, Aslan S. [1 ]
Soltanian-Zadeh, Hamid [1 ,2 ,3 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Cognit Sci, Tehran, Iran
[2] Univ Tehran, CIPCE, Sch Elect & Comp Engn, Tehran, Iran
[3] Henry Ford Hlth Syst, Dept Radiol, Image Anal Lab, Detroit, MI USA
关键词
electroencephalography; auditory/visual oddball task; single-trial analysis; change-point analysis; (alpha; beta)-band powers; frontal cortex; FMRI REVEALS; BAND OSCILLATIONS; ATTENTION; MRI;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
the brain rhythms defined by specific frequency bands of electroencephalography (EEG) signal are generally thought to represent diverse cognitive processes which wax and wane with sub-second resolutions at different parts of the cortex. Furthermore, single-trial analysis of EEG is believed to show more realistic pictures of ongoing and event-related activities of the brain with millisecond resolution. Here, we present a nonparametric multiple change-point detection and estimation method for analysis of single-trial EEG recorded during auditory and visual oddball tasks. In a simple attention task like oddball, the frontal cortex of the brain is responsible for distinguishing and responding appropriately to target and standard events. With sub-second resolution at the frontal cortex, we show that the alpha-band activity changes according to "inhibition timing" hypothesis and the beta-band activity is in line with "maintaining the status quo" hypothesis.
引用
收藏
页码:912 / 916
页数:5
相关论文
共 50 条
  • [1] Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI
    Benar, Christian-G.
    Schon, Daniele
    Grimault, Stephan
    Nazarian, Bruno
    Burle, Boris
    Roth, Muriel
    Badier, Jean-Michel
    Marquis, Patrick
    Liegeois-Chauvel, Catherine
    Anton, Jean-Luc
    [J]. HUMAN BRAIN MAPPING, 2007, 28 (07) : 602 - 613
  • [2] Single-trial discrimination for integrating simultaneous EEG and fMRI: Identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task
    Goldman, Robin I.
    Wei, Cheng-Yu
    Philiastides, Marios G.
    Gerson, Adam D.
    Friedman, David
    Brown, Truman R.
    Sajda, Paul
    [J]. NEUROIMAGE, 2009, 47 (01) : 136 - 147
  • [3] Trial-by-trial surprise-decoding model for visual and auditory binary oddball tasks
    Modirshanechi, Alireza
    Kiani, Mohammad Mahdi
    Aghajan, Hamid
    [J]. NEUROIMAGE, 2019, 196 : 302 - 317
  • [4] Functional MRI study of auditory and visual oddball tasks
    Yoshiura, T
    Zhong, JH
    Shibata, DK
    Kwok, WE
    Shrier, DA
    Numaguchi, Y
    [J]. NEUROREPORT, 1999, 10 (08) : 1683 - 1688
  • [5] AN ALTERNATIVE APPROACH FOR AUDITORY ATTENTION TRACKING USING SINGLE-TRIAL EEG
    Ekin, Bradley
    Atlas, Les
    Mirbagheri, Majid
    Lee, Adrian K. C.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 729 - 733
  • [6] Single-trial EEG dynamics of object and face visual processing
    Rousselet, Guillaume A.
    Husk, Jesse S.
    Bennett, Patrick J.
    Sekuler, Allison B.
    [J]. NEUROIMAGE, 2007, 36 (03) : 843 - 862
  • [7] CHANGE-POINT PROBLEMS IN EEG MONITORING
    MOLINARI, L
    DUMERMUTH, G
    [J]. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1987, 66 (04): : P72 - P72
  • [8] The role of auditory cortices in the retrieval of single-trial auditory-visual object memories
    Matusz, Pawel J.
    Thelen, Antonia
    Amrein, Sarah
    Geiser, Eveline
    Anken, Jacques
    Murray, Micah M.
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2015, 41 (05) : 699 - 708
  • [9] Event-related fMRI of auditory and visual oddball tasks
    Stevens, AA
    Skudlarski, P
    Gatenby, JC
    Gore, JC
    [J]. MAGNETIC RESONANCE IMAGING, 2000, 18 (05) : 495 - 502
  • [10] Outlier Detection for Single-Trial EEG Signal Analysis
    Wang, Boyu
    Wan, Feng
    Mak, Peng Un
    Mak, Pui In
    Vai, Mang I.
    [J]. 2011 5TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2011, : 478 - 481