Regularizing time transformations in symplectic and composite integration

被引:9
|
作者
Mikkola, S [1 ]
Wiegert, P [1 ]
机构
[1] Turku Univ Observ, Piikkio 21500, Finland
来源
基金
芬兰科学院;
关键词
time transformations; symplectic integration; three-body problem; planetary systems;
D O I
10.1023/A:1015248903174
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider numerical integration of nearly integrable Hamiltonian systems. The emphasis is on perturbed Keplerian motion, such as certain cases of the problem of two fixed centres and the restricted three-body problem. We show that the presently known methods have useful generalizations which are explicit and have a variable physical timestep which adjusts to both the central and perturbing potentials. These methods make it possible to compute accurately fairly close encounters. In some cases we suggest the use of composite (instead of symplectic) alternatives which typically seem to have equally good energy conservation properties.
引用
收藏
页码:375 / 390
页数:16
相关论文
共 50 条
  • [1] Regularizing Time Transformations in Symplectic and Composite Integration
    Seppo Mikkola
    Paul Wiegert
    Celestial Mechanics and Dynamical Astronomy, 2002, 82 : 375 - 390
  • [2] Regularizing transformations of polygons
    Lang J.
    Mick S.
    Röschel O.
    Journal of Geometry, 2017, 108 (2) : 791 - 801
  • [3] Contour dynamics with symplectic time integration
    Vosbeek, PWC
    Mattheij, RMM
    JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 133 (02) : 222 - 234
  • [4] Contour dynamics with symplectic time integration
    Dept. of Math. and Computing Science, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
    不详
    J. Comput. Phys., 2 (222-234):
  • [5] REGULARIZING TRANSFORMATIONS OF JACOBIAN INTEGRAL
    SZEBEHELY, V
    PIERCE, DA
    ASTRONOMICAL JOURNAL, 1966, 71 (09): : 886 - +
  • [6] On symplectic transformations
    Springer, T. A.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (01): : 279 - 302
  • [7] Variable time step integration with symplectic methods
    Hairer, E
    APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) : 219 - 227
  • [8] Polygons and iteratively regularizing affine transformations
    Roeschel O.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (1): : 69 - 79
  • [9] Regularizing dynamical problems with the symplectic logarithmic Hamiltonian leapfrog
    Mikkola, Seppo
    Tanikawa, Kiyotaka
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 430 (04) : 2822 - 2827
  • [10] Symplectic integration method for stress analysis of composite laminated plates
    Jia, Bao-Hui
    Wang, Yan-Li
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2012, 16 (06): : 692 - 704