Finite-Size Effects and Irrelevant Corrections to Scaling Near the Integer Quantum Hall Transition

被引:54
|
作者
Obuse, Hideaki [1 ]
Gruzberg, Ilya A. [2 ,3 ]
Evers, Ferdinand [1 ,4 ,5 ]
机构
[1] Karlsruhe Inst Technol, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[4] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76131 Karlsruhe, Germany
[5] Karlsruhe Inst Technol, Ctr Funct Nanostruct, D-76131 Karlsruhe, Germany
基金
美国国家科学基金会;
关键词
PLATEAU TRANSITIONS; ELECTRONS;
D O I
10.1103/PhysRevLett.109.206804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a numerical finite-size scaling study of the localization length in long cylinders near the integer quantum Hall transition employing the Chalker-Coddington network model. Corrections to scaling that decay slowly with increasing system size make this analysis a very challenging numerical problem. In this work we develop a novel method of stability analysis that allows for a better estimate of error bars. Applying the new method we find consistent results when keeping second (or higher) order terms of the leading irrelevant scaling field. The knowledge of the associated (negative) irrelevant exponent y is crucial for a precise determination of other critical exponents, including multifractal spectra of wave functions. We estimate vertical bar y vertical bar greater than or similar to 0: 4, which is considerably larger than most recently reported values. Within this approach we obtain the localization length exponent 2.62 +/- 0.06 confirming recent results. Our stability analysis has broad applicability to other observables at integer quantum Hall transition, as well as other critical points where corrections to scaling are present.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Quartic multifractality and finite-size corrections at the spin quantum Hall transition
    Puschmann, Martin
    Hernangomez-Perez, Daniel
    Lang, Bruno
    Bera, Soumya
    Evers, Ferdinand
    [J]. PHYSICAL REVIEW B, 2021, 103 (23)
  • [2] CORRECTIONS TO FINITE-SIZE SCALING FOR QUANTUM CHAINS
    GEHLEN, GV
    HOEGER, C
    RITTENBERG, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (09): : L469 - L472
  • [3] Statistics of conductances and subleading corrections to scaling near the integer quantum Hall plateau transition
    Obuse, H.
    Bera, S.
    Ludwig, A. W. W.
    Gruzberg, I. A.
    Evers, F.
    [J]. EPL, 2013, 104 (02)
  • [4] FINITE-SIZE CORRECTIONS IN THE QUANTUM HALL-EFFECT
    SHAPIRO, B
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (24): : 4709 - 4721
  • [5] Irrelevant Corrections at the Quantum Hall Transition
    Slevin, Keith
    Ohtsuki, Tomi
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2023, 17 (11):
  • [6] Phase transition and finite-size scaling for the integer partitioning problem
    Borgs, C
    Chayes, J
    Pittel, B
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (3-4) : 247 - 288
  • [7] Finite size and temperature corrections to the integer quantum Hall effect
    Granot, E
    [J]. PHYSICA B, 2000, 292 (3-4): : 264 - 272
  • [8] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    [J]. PHYSICA A, 1993, 195 (1-2): : 215 - 222
  • [9] ON FINITE-SIZE SCALING IN THE PRESENCE OF DANGEROUS IRRELEVANT VARIABLES
    BRANKOV, JG
    TONCHEV, NS
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (3-4) : 519 - 526
  • [10] Finite-size effects in the quantum anomalous Hall system
    Fu, Hua-Hua
    Lu, Jing-Tao
    Gao, Jin-Hua
    [J]. PHYSICAL REVIEW B, 2014, 89 (20):