Tight complexity bounds for the two-dimensional real knapsack problem

被引:2
|
作者
Brimkov, VE
Dantchev, SS
Leoncini, M
机构
[1] Eastern Mediterranean Univ, Dept Math, Famagusta, Turkey
[2] Univ Aarhus, Ctr Danish Natl Res Fdn, Dept Comp Sci, Aarhus C, Denmark
[3] Univ Bari, Fac Econ Foggia, I-71100 Foggia, Italy
关键词
D O I
10.1007/s100920050026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the complexity of the 2-dimensional knapsack problem max{c(1)x + c(2)y : a(1)x + a(2)y less than or equal to b, x, y is an element of Z(+)}, where c(1), c(2), a(1), a(2), b is an element of R+. The problem is defined in terms of real numbers and we study it where an integral solution is sought under a real number model of computation. We obtain a tight complexity bound Theta(log b/a(min)), where a(min) = min{a(1), a(2)}.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 50 条
  • [1] Tight complexity bounds for the two-dimensional real knapsack problem
    Valentin E. Brimkov
    Stefan S. Dantchev
    Mauro Leoncini
    CALCOLO, 1999, 36 : 123 - 128
  • [2] On the two-dimensional knapsack problem
    Caprara, A
    Monaci, M
    OPERATIONS RESEARCH LETTERS, 2004, 32 (01) : 5 - 14
  • [3] Unconstrained two-dimensional knapsack problem
    Álvarez-Martínez, David
    Toro-Ocampo, Eliana Mirledy
    Gallego-Rendón, Ramón Alfonso
    Ingenieria y Universidad, 2010, 14 (02): : 327 - 344
  • [4] On the Two-Dimensional Knapsack Problem for Convex Polygons
    Merino, Arturo
    Wiese, Andreas
    ACM TRANSACTIONS ON ALGORITHMS, 2024, 20 (02)
  • [5] Tight bounds for periodicity theorems on the unbounded Knapsack problem
    Huang, Ping H.
    Lawley, Mark
    Morin, Thomas
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 215 (02) : 319 - 324
  • [6] Faster approximation schemes for the two-dimensional knapsack problem
    Heydrich, Sandy
    Wiese, Andreas
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 79 - 98
  • [7] The two-dimensional knapsack problem with splittable items in stacks
    Rapine, Christophe
    Pedroso, Joao Pedro
    Akbalik, Ayse
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2022, 112
  • [8] Faster Approximation Schemes for the Two-Dimensional Knapsack Problem
    Heydrich, Sandy
    Wiese, Andreas
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (04)
  • [9] Two-dimensional knapsack-block packing problem
    Zhou, Shengchao
    Li, Xueping
    Zhang, Kaike
    Du, Ni
    APPLIED MATHEMATICAL MODELLING, 2019, 73 : 1 - 18
  • [10] An approximation scheme for the two-stage, two-dimensional knapsack problem
    Caprara, Alberto
    Lodi, Andrea
    Monaci, Michele
    DISCRETE OPTIMIZATION, 2010, 7 (03) : 114 - 124