Eigenvalue intervals for a two-point boundary value problem on a measure chain

被引:32
|
作者
Anderson, DR [1 ]
机构
[1] Concordia Coll, Dept Math & Comp Sci, Moorhead, MN 56562 USA
关键词
fixed point theorems; Green's function;
D O I
10.1016/S0377-0427(01)00435-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of eigenvalue intervals for the second-order differential equation on a measure chain, x(DeltaDelta)(t) + lambdap(t)f(x(sigma)(t)) = 0, t is an element of [t(1), t(2)], satisfying the boundary conditions alphax(t(1)) - betax(Delta) = 0 and gammax(sigma(t(2))) + delta(x(Delta)(sigma)(t(2))) = 0, where f is a positive function and p a nonnegative function that is allowed to vanish on some subintervals of [t(1), sigma(t(2))] of the measure chain. The methods involve applications of a fixed point theorem for operators on a cone in a Banach space. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 50 条