MULTISCALE FRAMEWORK FOR ADAPTIVE AND ROBUST ENHANCEMENT OF DEPTH IN MULTI-VIEW IMAGERY

被引:0
|
作者
Helgason, Hannes [1 ]
Li, Haopeng [1 ]
Flierl, Markus [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn, Stockholm, Sweden
关键词
DIBR; Free Viewpoint Television; Depth Consistency; Adaptive Estimation; Multiscale Modelling;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Depth Image Based Rendering (DIBR) is a standard technique in free viewpoint television for rendering virtual camera views. For synthesis it utilizes one or several reference texture images and associated depth images, which contain information about the 3D structure of the scene. Many popular depth estimation methods infer the depth information by considering texture images in pairs. This often leads to severe inconsistencies among multiple reference depth images, resulting in poor rendering quality. We propose a method which takes as input a set of depth images and returns an enhanced depth map to be used for rendering at the virtual viewpoint. Our framework is data-driven and based on a simple geometric multiscale model of the underlying depth. Inconsistencies and errors in the inputted depth images are handled locally using tools from the field of robust statistics. Numerical comparison shows the method outperform standard MPEG DIBR software.
引用
收藏
页码:13 / 16
页数:4
相关论文
共 50 条
  • [1] Occlusion-Robust Human Tracking with Integrated Multi-View Depth Imagery
    Fukushi, Kenichiro
    Kumazawa, Itsuo
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (12): : 3181 - 3191
  • [2] A robust framework for multi-view stereopsis
    Mao, Wendong
    Wang, Mingjie
    Huang, Hui
    Gong, Minglun
    [J]. VISUAL COMPUTER, 2022, 38 (05): : 1539 - 1551
  • [3] A robust framework for multi-view stereopsis
    Wendong Mao
    Mingjie Wang
    Hui Huang
    Minglun Gong
    [J]. The Visual Computer, 2022, 38 : 1539 - 1551
  • [4] Content Adaptive Enhancement of Multi-View Depth Maps for Free Viewpoint Video
    Ekmekcioglu, Erhan
    Velisavljevic, Vladan
    Worrall, Stewart T.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (02) : 352 - 361
  • [5] A Benchmark and a Baseline for Robust Multi-view Depth Estimation
    Schroeppel, Philipp
    Bechtold, Jan
    Amiranashvili, Artemij
    Brox, Thomas
    [J]. 2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 637 - 645
  • [6] EDGE AND MOTION-ADAPTIVE MEDIAN FILTERING FOR MULTI-VIEW DEPTH MAP ENHANCEMENT
    Ekmekcioglu, Erhan
    Velisavljevic, Vladan
    Worrall, Stewart T.
    [J]. PCS: 2009 PICTURE CODING SYMPOSIUM, 2009, : 109 - +
  • [7] Adaptive depth estimation for pyramid multi-view stereo
    Liao, Jie
    Fu, Yanping
    Yan, Qingan
    Luo, Fei
    Xiao, Chunxia
    [J]. COMPUTERS & GRAPHICS-UK, 2021, 97 : 268 - 278
  • [8] Adaptive Multi-Modality Residual Network for Compression Distorted Multi-View Depth Video Enhancement
    Chen, Siqi
    Liu, Qiong
    Yang, You
    [J]. IEEE ACCESS, 2020, 8 : 97072 - 97081
  • [9] EFFICIENT EDGE, MOTION AND DEPTH-RANGE ADAPTIVE PROCESSING FOR ENHANCEMENT OF MULTI-VIEW DEPTH MAP SEQUENCES
    Ekmekcioglu, Erhan
    Velisavljevic, Vladan
    Worrall, Stewart T.
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3537 - +
  • [10] Robust Adaptive-weighting Multi-view Classification
    Jiang, Bingbing
    Xiang, Junhao
    Wu, Xingyu
    He, Wenda
    Hong, Libin
    Sheng, Weiguo
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3117 - 3121