Error estimates for Galerkin approximations to the periodic Schrodinger-Poisson system

被引:9
|
作者
Bohun, S
Illner, R
Lange, H
Zweifel, PF
机构
[1] VIRGINIA TECH,CTR TRANSPORT THEORY & MATH PHYS,BLACKSBURG,VA 24061
[2] UNIV COLOGNE,INST MATH,D-50931 COLOGNE,GERMANY
来源
关键词
D O I
10.1002/zamm.19960760103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish convergence rates for a Galerkin approximation to the periodic Schrodinger-Poisson problem in the unit cube [0,1](3). The error estimates transform into corresponding L(infinity)-error estimates for the Wigner distribution function.
引用
收藏
页码:7 / 13
页数:7
相关论文
共 50 条
  • [1] Error estimates for galerkin approximations to the periodic Schroedinger-Poisson system
    Bohun, S.
    Illner, R.
    Lange, H.
    Zweifel, P.F.
    [J]. Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 1996, 76 (01):
  • [2] Optimal Error Estimates of Compact Finite Difference Discretizations for the Schrodinger-Poisson System
    Zhang, Yong
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (05) : 1357 - 1388
  • [3] Asymptotic decay estimates for the repulsive Schrodinger-Poisson system
    Sánchez, O
    Soler, J
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (04) : 371 - 380
  • [4] Quasilinear asymptotically periodic Schrodinger-Poisson system with subcritical growth
    Zhang, Jing
    Guo, Lifeng
    Yang, Miaomiao
    [J]. BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [5] On the planar Schrodinger-Poisson system
    Cingolani, Silvia
    Weth, Tobias
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (01): : 169 - 197
  • [6] The quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [7] THE SCHRODINGER-POISSON SYSTEM ON THE SPHERE
    Gerard, Patrick
    Mehats, Florian
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) : 1232 - 1268
  • [8] ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS OF THE "CLASSICAL" BOUSSINESQ SYSTEM
    Antonopoulos, D. C.
    Dougalis, V. A.
    [J]. MATHEMATICS OF COMPUTATION, 2013, 82 (282) : 689 - 717
  • [9] On a quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [10] Positive solutions of an asymptotically periodic Schrodinger-Poisson system with critical exponent
    Liu, Haidong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 198 - 212