FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data

被引:203
|
作者
Herman, Josip S. [1 ,2 ,3 ]
Sagar [1 ]
Gruen, Dominic [1 ]
机构
[1] Max Planck Inst Immunobiol & Epigenet, Freiburg, Germany
[2] Univ Freiburg, Fac Biol, Freiburg, Germany
[3] IMPRS MCB, Freiburg, Germany
关键词
HEMATOPOIETIC STEM; LINEAGE COMMITMENT; EXPRESSION; IDENTIFICATION; HETEROGENEITY; TRANSCRIPTOME; TRAJECTORIES; PATHWAYS;
D O I
10.1038/nmeth.4662
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
To understand stem cell differentiation along multiple lineages, it is necessary to resolve heterogeneous cellular states and the ancestral relationships between them. We developed a robotic miniaturized CEL-Seq2 implementation to carry out deep single-cell RNA-seq of similar to 2,000 mouse hematopoietic progenitors enriched for lymphoid lineages, and used an improved clustering algorithm, RaceID3, to identify cell types. To resolve subtle transcriptome differences indicative of lineage biases, we developed FateID, an iterative supervised learning algorithm for the probabilistic quantification of cell fate bias in progenitor populations. Here we used FateID to delineate domains of fate bias and enable the derivation of high-resolution differentiation trajectories, thereby revealing a common progenitor population of B cells and plasmacytoid dendritic cells, which we validated by in vitro differentiation assays. We expect that FateID will improve understanding of the process of cell fate choice in complex multi-lineage differentiation systems.
引用
收藏
页码:379 / +
页数:14
相关论文
共 50 条
  • [1] FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data
    Josip S Herman
    Dominic Sagar
    [J]. Nature Methods, 2018, 15 : 379 - 386
  • [2] Blood Cell Fate Decisions: Insights from Single-cell RNA-seq
    Socolovsky, Merav
    [J]. BLOOD, 2019, 134
  • [3] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    [J]. Scientific Reports, 13
  • [4] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Comparison of transformations for single-cell RNA-seq data
    Constantin Ahlmann-Eltze
    Wolfgang Huber
    [J]. Nature Methods, 2023, 20 : 665 - 672
  • [6] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    [J]. MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [7] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    [J]. GENOME BIOLOGY, 2019, 20 (1)
  • [8] Comparison of transformations for single-cell RNA-seq data
    Ahlmann-Eltze, Constantin
    Huber, Wolfgang
    [J]. NATURE METHODS, 2023, 20 (05) : 665 - +
  • [9] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    [J]. Genome Biology, 20
  • [10] SINGLE-CELL ANALYSIS From single-cell RNA-seq to transcriptional regulation
    La Manno, Gioele
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1421 - 1422