Dirac Fermions in Strongly Bound Graphene Systems

被引:68
|
作者
Li, Yuanchang [1 ,2 ]
Chen, Pengcheng [1 ,2 ]
Zhou, Gang [1 ,2 ]
Li, Jia [3 ]
Wu, Jian [1 ,2 ]
Gu, Bing-Lin [4 ]
Zhang, S. B. [5 ]
Duan, Wenhui [1 ,2 ,4 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Grad Sch Shenzhen, Inst Adv Mat, Shenzhen 518055, Peoples R China
[4] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[5] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
基金
中国国家自然科学基金;
关键词
AUGMENTED-WAVE METHOD;
D O I
10.1103/PhysRevLett.109.206802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is highly desirable to integrate graphene into existing semiconductor technology, where the combined system is thermodynamically stable yet maintain a Dirac cone at the Fermi level. First-principles calculations reveal that a certain transition metal (TM) intercalated graphene/SiC(0001), such as the strongly bound graphene on SiC with Mn intercalation, could be such a system. Different from freestanding graphene, the hybridization between graphene and Mn/SiC leads to the formation of a dispersive Dirac cone of primarily TM d characters. The corresponding Dirac spectrum is still isotropic, and the transport behavior is nearly identical to that of freestanding graphene for a bias as large as 0.6 V, except that the Fermi velocity is half that of graphene. A simple model Hamiltonian is developed to qualitatively account for the physics of the transfer of the Dirac cone from a dispersive system (e. g., graphene) to an originally nondispersive system (e.g., TM).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Bound states for massive Dirac fermions in graphene in a magnetic step field
    L. Dell’Anna
    A. Alidoust Ghatar
    D. Jahani
    [J]. The European Physical Journal B, 2021, 94
  • [2] Bound states for massive Dirac fermions in graphene in a magnetic step field
    Dell'Anna, L.
    Alidoust Ghatar, A.
    Jahani, D.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (07):
  • [3] Thermometry for Dirac fermions in graphene
    Liu, Fan-Hung
    Hsu, Chang-Shun
    Lo, Shun-Tsung
    Chuang, Chiashain
    Huang, Lung-, I
    Woo, Tak-Pong
    Liang, Chi-Te
    Fukuyama, Y.
    Yang, Y.
    Elmquist, R. E.
    Wang, Pengjie
    Lin, Xi
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 66 (01) : 1 - 6
  • [4] Thermometry for Dirac fermions in graphene
    Fan-Hung Liu
    Chang-Shun Hsu
    Shun-Tsung Lo
    Chiashain Chuang
    Lung-I Huang
    Tak-Pong Woo
    Chi-Te Liang
    Y. Fukuyama
    Y. Yang
    R. E. Elmquist
    Pengjie Wang
    Xi Lin
    [J]. Journal of the Korean Physical Society, 2015, 66 : 1 - 6
  • [5] Composite Dirac fermions in graphene
    Khveshchenko, D. V.
    [J]. PHYSICAL REVIEW B, 2007, 75 (15):
  • [6] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
    Mohsen Yarmohammadi
    Malek Zareyan
    [J]. Chinese Physics B, 2016, (06) : 567 - 572
  • [7] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
    Yarmohammadi, Mohsen
    Zareyan, Malek
    [J]. CHINESE PHYSICS B, 2016, 25 (06)
  • [8] Analogies for Dirac fermions physics in graphene
    Dragoman, Daniela
    Dragoman, Mircea
    [J]. SOLID-STATE ELECTRONICS, 2024, 211
  • [9] Cloning of Dirac fermions in graphene superlattices
    L. A. Ponomarenko
    R. V. Gorbachev
    G. L. Yu
    D. C. Elias
    R. Jalil
    A. A. Patel
    A. Mishchenko
    A. S. Mayorov
    C. R. Woods
    J. R. Wallbank
    M. Mucha-Kruczynski
    B. A. Piot
    M. Potemski
    I. V. Grigorieva
    K. S. Novoselov
    F. Guinea
    V. I. Fal’ko
    A. K. Geim
    [J]. Nature, 2013, 497 : 594 - 597
  • [10] Weak localization of Dirac fermions in graphene
    Yan, Xin-Zhong
    Ting, C. S.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (12)