Absence of Site Percolation at Criticality in Z2 x {0,1}

被引:1
|
作者
Damron, Michael [1 ]
Newman, Charles M. [2 ,3 ]
Sidoravicius, Vladas [4 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] NYU, Courant Inst, New York, NY USA
[3] Univ Calif Irvine, Irvine, CA 92717 USA
[4] IMPA, BR-22460320 Rio De Janeiro, Brazil
基金
美国国家科学基金会;
关键词
critical percolation; slab percolation; sandwich percolation; two dimensions;
D O I
10.1002/rsa.20544
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this note we consider site percolation on a two dimensional sandwich of thickness two, the graph Z2x{0,1}. We prove that there is no percolation at the critical point. The same arguments are valid for a sandwich of thickness three with periodic boundary conditions. It remains an open problem to extend this result to other sandwiches. Note added in proof: This extension has recently been accomplished in arXiv 1401.7130. (c) 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 328-340, 2015
引用
收藏
页码:328 / 340
页数:13
相关论文
共 50 条
  • [1] 1-independent percolation on Z2 x Kn
    Falgas-Ravry, Victor
    Pfenninger, Vincent
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (04) : 887 - 910
  • [2] Dependent percolation on Z2
    de Lima, Bernardo N. B.
    Sidoravicius, Vladas
    Vares, Maria Eulalia
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2023, 37 (02) : 431 - 454
  • [3] Type 0 Z2 X Z2 heterotic string orbifolds and misaligned supersymmetry
    Faraggi, Alon E.
    Matyas, Viktor G.
    Percival, Benjamin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (24):
  • [4] A Z2 x Z2 standard model
    Blaszczyk, Michael
    Nibbelink, Stefan Groot
    Ratz, Michael
    Ruehle, Fabian
    Trapletti, Michele
    Vaudrevange, Patrick K. S.
    PHYSICS LETTERS B, 2010, 683 (4-5) : 340 - 348
  • [5] Self-avoiding walks on Z x {0,1}
    Nikolov, Nikolai
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (01) : 376 - 377
  • [6] SCALING OF THE PERCOLATION OF RANDOM FIELD ON Z2
    STEPANOV, AK
    DOKLADY AKADEMII NAUK SSSR, 1988, 300 (04): : 814 - 818
  • [7] Energy of flows on Z2 percolation clusters
    Hoffman, C
    RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (02) : 143 - 155
  • [8] Does Eulerian percolation on Z2 percolate?
    Garet, Olivier
    Marchand, Regine
    Marcovici, Irene
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (01): : 279 - 294
  • [9] PERCOLATION OF ARBITRARY WORDS IN (0,1)(N)
    BENJAMINI, I
    KESTEN, H
    ANNALS OF PROBABILITY, 1995, 23 (03): : 1024 - 1060
  • [10] Towards classification of N=1 and N=0 flipped SU(5) asymmetric Z2 x Z2 heterotic string orbifolds
    Faraggi, Alon E.
    Matyas, Viktor G.
    Percival, Benjamin
    PHYSICAL REVIEW D, 2022, 106 (02)