Improving a Manufacturing Process Using Data-Based Methods

被引:3
|
作者
Doganaksoy, Necip [1 ]
Hahn, Gerald J. [2 ]
机构
[1] GlobalFoundries, Malta, NY 12020 USA
[2] GE Global Res Ctr, Niskayuna, NY 12309 USA
关键词
quality; graphical methods; variance component analysis; statistics; power generation equipment;
D O I
10.1002/qre.1582
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data-based methods and simple graphical analyses can be used broadly to improve quality for manufacturing processes. We provide a case study dealing with the manufacture of stator bars used in electric power generation equipment. We describe the examination of existing data, capability and stability assessment, addressing measurement error, using the preceding evaluations to reduce deviations from target and variability, and subsequent statistical monitoring. Some concluding remarks deal briefly with various further topics, including the importance of a proactive approach. Takeaways and added comments, spread throughout the article, provide further elaboration on or beyond the case study. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:427 / 435
页数:9
相关论文
共 50 条
  • [1] Data-based methods for quality improvement by process step integration
    Prozessstufenuebergreifende Qualitaetsverbesserung mit datenbasierten Methoden
    [J]. Peters, Harald, 2000, Verlag Stahleisen GmbH, Duesseldorf, Germany (120):
  • [2] Data-based methods for quality improvement by process step integration
    Peters, H
    Link, N
    Heckenthaler, T
    [J]. STAHL UND EISEN, 2000, 120 (08): : 71 - 77
  • [3] Process data-based assessment
    Neumann, Michael
    Schwöppe, Patrick
    [J]. Steel Times International, 2019, 43 (07): : 24 - 26
  • [4] Data-based latent variable methods for process analysis, monitoring and control
    MacGregor, JF
    [J]. EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING - 14, 2004, 18 : 87 - 98
  • [5] Data-based latent variable methods for process analysis, monitoring and control
    MacGregor, JF
    Yu, HL
    Muñoz, SG
    Flores-Cerrillo, J
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (06) : 1217 - 1223
  • [6] Using data mining methods for manufacturing process control
    Vazan, P.
    Janikova, D.
    Tanuska, P.
    Kebisek, M.
    Cervenanska, Z.
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 6178 - 6183
  • [7] Data-based scheduling for complex manufacturing processes
    Wu, Qi-Di
    Qiao, Fei
    Li, Li
    Wu, Ying
    [J]. Zidonghua Xuebao/ Acta Automatica Sinica, 2009, 35 (06): : 807 - 813
  • [8] A Predictive Analysis Data-Based for Additive Manufacturing
    Remadna, Ahmed
    Benatia, Amin
    Louis, Anne
    Gout, Christian
    [J]. ADVANCES IN MANUFACTURING TECHNOLOGY XXXII, 2018, 8 : 125 - 130
  • [9] Data-based Design of Inverse Dynamics Using Gaussian Process
    Lee, Junghoon
    Oh, Sehoon
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS (ICM), 2019, : 449 - 454
  • [10] Methods for Plant Data-Based Process Modeling in Soft-Sensor Development
    Sliskovic, Drazen
    Grbic, Ratko
    Hocenski, Zeljko
    [J]. AUTOMATIKA, 2011, 52 (04) : 306 - 318