Thermoeconomic optimization of a solar-assisted supercritical CO2 Brayton cycle, organic Rankine cycle and multi-effect distillation system

被引:17
|
作者
Khademi, Mohammad [1 ]
Ahmadi, Abolfazl [1 ]
Dashti, Reza [1 ]
Shirmohammadi, Reza [2 ]
机构
[1] Iran Univ Sci & Technol, Sch Adv Technol, Dept Energy Syst Engn, Tehran, Iran
[2] Univ Tehran, Fac New Sci & Technol, Dept Renewable Energies & Environm, Tehran, Iran
关键词
Solar Brayton cycle; Genetic algorithm; Supercritical carbon dioxide; Organic Rankine cycle (ORC); Multi effect desalination (MED); THERMODYNAMIC ANALYSIS; POWER-PLANT; PERFORMANCE EVALUATION; ENERGY; WATER; EXERGY; DESIGN;
D O I
10.1016/j.egyr.2022.10.010
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation system driven by solar energy have been applied for power and freshwater generation. In this cycle, the solar collector, the central receiver reflected the sun's light by heliostats, enters the storage system and then enters the fluid stream according to the amount of heat required to initiate the cycle. The working fluid of solar receiver is a mixture of the 60% NaNO3 and 40% KNO3, supercritical carbon dioxide is working fluid of the Brayton cycle and R600 is the working fluid of the organic Rankine cycle. The innovation of this article is using power and fresh water cycle without fuel consumption (with solar system and storage tanks). The simulation of this combined cycle was carried out by engineering equation solver software and energy and exergy efficiency changes in terms of different parameters are obtained. Then, a multi objective optimization of this system considering exergy efficiency and cost of system as objective functions is performed by genetic algorithm in Matlab software. Decision variables of the whole cycles are including Compressor inlet temperature, Turbine inlet temperature, Number of MED effect, The temperature of the water fed the desalination, Evaporator pinch point, Mass flow (Critical Carbon Dioxide), Turbine inlet pressure, Compressor inlet pressure and Pressure drop. The two objective functions optimization including exergy and economic parameters of this cycle is carried out for achieving reduction of electricity generation cost and increase of the exergy efficiency. The results of this optimization showed, the maximum exergy efficiency of this combined system is 61.78% and the minimum cost of electricity production is 0.2617 $/kWh. In this regard, the multiple effect distillation system produces 530.9 KgS freshwater in 15 stages. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:13494 / 13503
页数:10
相关论文
共 50 条
  • [1] Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle
    Akbari, Ata D.
    Mahmoudi, Seyed M. S.
    ENERGY, 2014, 78 : 501 - 512
  • [2] Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system
    Liang, Yingzong
    Chen, Jiansheng
    Luo, Xianglong
    Chen, Jianyong
    Yang, Zhi
    Chen, Ying
    JOURNAL OF CLEANER PRODUCTION, 2020, 266 (266)
  • [3] Exergoeconomic analysis and optimization of an integrated system of supercritical CO2 Brayton cycle and multi-effect desalination
    Alharbi, Sattam
    Elsayed, Mohamed L.
    Chow, Louis C.
    ENERGY, 2020, 197
  • [4] Thermoeconomic Analysis of a Combined Natural Gas Cogeneration System With a Supercritical CO2Brayton Cycle and an Organic Rankine Cycle
    Pan, Zhen
    Yan, Mingyue
    Shang, Liyan
    Li, Ping
    Zhang, Li
    Liu, Jiaqi
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2020, 142 (10):
  • [5] Analysis and Performance Optimization of Supercritical CO2 Recompression Brayton Cycle Coupled Organic Rankine Cycle Based on Solar Tower
    Yu, Tingfang
    Song, Yuxi
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (05):
  • [6] Integration of Supercritical CO2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison
    Mahmoudi, Seyed Mohammad Seyed
    Sardroud, Ramin Ghiami
    Sadeghi, Mohsen
    Rosen, Marc A.
    SUSTAINABILITY, 2022, 14 (14)
  • [7] Combined Supercritical CO2 Brayton Cycle and Organic Rankine Cycle for Exhaust Heat Recovery
    Carapellucci, Roberto
    Di Battista, Davide
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (06):
  • [8] Assessment of a Geothermal Combined System with an Organic Rankine Cycle and Multi-effect Distillation Desalination
    Aida Farsi
    Marc A. Rosen
    Earth Systems and Environment, 2022, 6 : 15 - 27
  • [9] Cogeneration using multi-effect distillation and a solar-powered supercritical carbon dioxide Brayton cycle
    Sharan, Prashant
    Neises, Ty
    McTigue, Joshua Dominic
    Turchi, Craig
    DESALINATION, 2019, 459 : 20 - 33
  • [10] Assessment of a Geothermal Combined System with an Organic Rankine Cycle and Multi-effect Distillation Desalination
    Farsi, Aida
    Rosen, Marc A.
    EARTH SYSTEMS AND ENVIRONMENT, 2022, 6 (01) : 15 - 27