Full-Wave Computation of the Electric Field in the Partial Element Equivalent Circuit Method Using Taylor Series Expansion of the Retarded Green's Function

被引:4
|
作者
Kovacevic-Badstuebner, Ivana [1 ]
Romano, Daniele [2 ]
Antonini, Giulio [2 ]
Lombardi, Luigi [3 ]
Grossner, Ulrike [1 ]
机构
[1] Swiss Fed Inst Technol, Adv Power Semicond Lab, CH-8092 Zurich, Switzerland
[2] Univ Aquila, UAq Electromagnet Compatibil Lab, Dept Ind & Informat Engn & Econ, I-67100 Laquila, Italy
[3] Micron Semicond Italia Srl, I-67051 Avezzano, Italy
关键词
Electric field; integral equations; magnetic field; partial element equivalent circuit (PEEC) method; Taylor series expansion; TIME-DOMAIN; FAST MULTIPOLE; LOOP ANTENNA; PEEC; MODELS; EXPRESSIONS; EM;
D O I
10.1109/TMTT.2020.3002812
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents new analytical formulas for the efficient computation of the full-wave electric field generated by conductive, dielectric, and magnetic media in the framework of the partial element equivalent circuit (PEEC) method. To this aim, the full-wave Green's function is handled by the Taylor series expansion leading to three types of integrals for which new analytical formulas are provided in order to avoid slower numerical integration. An orthogonal (Manhattan type) tessellation of the geometries is assumed, and the electrical quantities, i.e., currents, charges, and magnetization, are expanded in space through rectangular basis functions. The full-wave electric field radiated by charges, currents, and magnetization is computed analytically in the postprocessing step. The proposed closed-form computation of the electric field is tested using two examples, comparing the results obtained by the derived analytical formulas with the results from a finite element method solver.
引用
收藏
页码:3242 / 3254
页数:13
相关论文
共 39 条