Semi-conformal polynomials and harmonic morphisms

被引:0
|
作者
Ababou, R
Baird, P
Brossard, J
机构
[1] Univ Bretagne Occidentale, Dept Math, F-29275 Brest, France
[2] Inst Fourier, F-38402 St Martin Dheres, France
关键词
D O I
10.1007/PL00004744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Liouville type theorem for harmonic morphisms from R-m to R-n (n greater than or equal to 3), showing that any such mapping which is defined off a polar set must be polynomial. We show that any semi-conformal mapping from R-m to R-n defined by polynomials is necessarily harmonic. This result has consequences for the local behaviour of a semi-conformal mapping between arbitrary Riemannian manifolds about a singular point.
引用
收藏
页码:589 / 604
页数:16
相关论文
共 50 条
  • [1] A geometric theory of harmonic and semi-conformal maps
    Kock, Anders
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (05): : 708 - 724
  • [2] Conformal and semi-conformal biharmonic maps
    Baird, Paul
    Fardoun, Ali
    Ouakkas, Seddik
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 34 (04) : 403 - 414
  • [3] Conformal and semi-conformal biharmonic maps
    Paul Baird
    Ali Fardoun
    Seddik Ouakkas
    Annals of Global Analysis and Geometry, 2008, 34 : 403 - 414
  • [4] SEMI-CONFORMAL L-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM
    Remli, Embarka
    Cherif, Ahmed Mohammed
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 121 - 130
  • [5] WARPED PRODUCTS, BIHARMONIC AND SEMI-CONFORMAL MAPS
    Torbaghan, Seyed Mehdi Kazemi
    Rezaii, Morteza Mirmohammad
    MATHEMATICAL REPORTS, 2019, 21 (04): : 441 - 459
  • [6] Conformal actions and harmonic morphisms
    Pantilie, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 129 : 527 - 547
  • [8] The varieties of semi-conformal vectors of affine vertex operator algebras
    Chu, Yanjun
    Lin, Zongzhu
    JOURNAL OF ALGEBRA, 2018, 515 : 77 - 101
  • [9] The classification of semi-conformal structures of Heisenberg vertex operator algebras
    Chu, Yanjun
    Lin, Zongzhu
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 200
  • [10] Semi-conformal structure on certain vertex superalgebras associated to vertex superalgebroids
    Ming Li
    Frontiers of Mathematics in China, 2019, 14 : 881 - 906