We consider the nonautonomous differential equation of second order x '' + a(t)x - b(t)x' + c(t)x(2k+1) = 0, where a(t), b(t), c(t) are T-periodic functions and 2 <= l < 2k + 1. This is a generalization of a biomathematical model of an aneurysm in the circle of Willis. We prove the existence of a T-periodic solution for this equation, using a saddle-point theorem.
机构:
Jiangnan Univ, Coll Sci, Wuxi 214122, Peoples R ChinaJiangnan Univ, Coll Sci, Wuxi 214122, Peoples R China
Jiang, Fangfang
Chen, Yujuan
论文数: 0引用数: 0
h-index: 0
机构:
Nantong Univ, Sch Math & Stat, Nantong 226019, Peoples R ChinaJiangnan Univ, Coll Sci, Wuxi 214122, Peoples R China
Chen, Yujuan
Sun, Jitao
论文数: 0引用数: 0
h-index: 0
机构:
Nantong Univ, Sch Math & Stat, Nantong 226019, Peoples R China
Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R ChinaJiangnan Univ, Coll Sci, Wuxi 214122, Peoples R China