Existence of periodic solutions for a nonautonomous differential equation

被引:0
|
作者
Albuquerque de Araujo, Anderson Luis [1 ]
Martins, Ricardo Miranda [2 ]
机构
[1] DMA UFV, BR-36570000 Vicosa, MG, Brazil
[2] IMECC UNICAMP, BR-13083970 Campinas, SP, Brazil
关键词
LINKING;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nonautonomous differential equation of second order x '' + a(t)x - b(t)x' + c(t)x(2k+1) = 0, where a(t), b(t), c(t) are T-periodic functions and 2 <= l < 2k + 1. This is a generalization of a biomathematical model of an aneurysm in the circle of Willis. We prove the existence of a T-periodic solution for this equation, using a saddle-point theorem.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 50 条