Testing spatial heterogeneity with stock assessment models

被引:8
|
作者
Jardim, Ernesto [1 ]
Eero, Margit [2 ]
Silva, Alexandra [3 ]
Ulrich, Clara [2 ]
Pawlowski, Lionel [4 ]
Holmes, Steven J. [1 ]
Ibaibarriaga, Leire [5 ]
De Oliveira, Jose A. A. A. [6 ]
Riveiro, Isabel [7 ]
Alzorriz, Nekane [1 ]
Citores, Leire [5 ,9 ]
Scott, Finlay [1 ]
Uriarte, Andres [8 ]
Carrera, Pablo [7 ]
Duhamel, Erwan [4 ]
Mosqueira, Iago [1 ]
机构
[1] European Commiss, JRC, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
[2] Tech Univ Denmark DTU AQUA, Natl Inst Aquat Resources, Charlottenlund, Denmark
[3] IPMA, Av Dr Alfredo Magalhaes Ramalho 6, P-1449006 Lisbon, Portugal
[4] IFREMER, Lab Technol & Biol Halieut, 8 Rue Francois Toullec, F-56100 Lorient, France
[5] AZTI Tecnalia, Marine Res Div, Sukarrieta 48395, Bizkaia, Spain
[6] CEFAS, Lowestoft Lab, Pakefield Rd, Lowestoft NR33 0HT, Suffolk, England
[7] IEO, Ctr Oceanog Vigo, Subida Radio Faro 50, Vigo 36390, Spain
[8] AZTI Tecnalia, Marine Res Div, Pasaia 20110, Gipuzkoa, Spain
[9] BCAM, Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
来源
PLOS ONE | 2018年 / 13卷 / 01期
关键词
COD GADUS-MORHUA; SARDINE SARDINA-PILCHARDUS; NORTH-SEA; ATLANTIC COD; POPULATION-STRUCTURE; GEOGRAPHIC VARIABILITY; NORTHEASTERN ATLANTIC; FISH; DYNAMICS; WEST;
D O I
10.1371/journal.pone.0190791
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper describes a methodology that combines meta-population theory and stock assessment models to gain insights about spatial heterogeneity of the meta-population in an operational time frame. The methodology was tested with stochastic simulations for different degrees of connectivity between sub-populations and applied to two case studies, North Sea cod (Gadus morua) and Northeast Atlantic sardine (Sardina pilchardus). Considering that the biological components of a population can be partitioned into discrete spatial units, we extended this idea into a property of additivity of sub-population abundances. If the additivity results hold true for putative sub-populations, then assessment results based on sub-populations will provide information to develop and monitor the implementation of finer scale/local management. The simulation study confirmed that when sub-populations are independent and not too heterogeneous with regards to productivity, the sum of stock assessment model estimates of sub-populations' SSB is similar to the SSB estimates of the meta-population. It also showed that a strong diffusion process can be detected and that the stronger the connection between SSB and recruitment, the better the diffusion process will be detected. On the other hand it showed that weak to moderate diffusion processes are not easy to identify and large differences between sub-populations productivities may be confounded with weak diffusion processes. The application to North Sea cod and Atlantic sardine exemplified how much insight can be gained. In both cases the results obtained were sufficiently robust to support the regional analysis.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] SPATIAL HETEROGENEITY IN CROP LOSS ASSESSMENT MODELS
    HUGHES, G
    [J]. PHYTOPATHOLOGY, 1988, 78 (07) : 883 - 884
  • [2] Spatial Structure: Theory, estimation and application in stock assessment models
    Cadrin, Steven X.
    Maunder, Mark N.
    Punt, Andre E.
    [J]. FISHERIES RESEARCH, 2020, 229
  • [3] Incorporating the spatial component of fisheries data into stock assessment models
    Booth, AJ
    [J]. ICES JOURNAL OF MARINE SCIENCE, 2000, 57 (04) : 858 - 865
  • [4] Testing the correct specification of a system of spatial dependence models for stock returns
    Kutzker, Tim
    Wied, Dominik
    [J]. EMPIRICAL ECONOMICS, 2024, 66 (05) : 2083 - 2103
  • [5] Testing the correct specification of a system of spatial dependence models for stock returns
    Tim Kutzker
    Dominik Wied
    [J]. Empirical Economics, 2024, 66 : 2083 - 2103
  • [6] The performance of a size-structured stock assessment method in the face of spatial heterogeneity in growth
    Punt, AE
    [J]. FISHERIES RESEARCH, 2003, 65 (1-3) : 391 - 409
  • [7] SPATIAL HETEROGENEITY AND ECOLOGICAL MODELS
    HASTINGS, A
    [J]. ECOLOGY, 1990, 71 (02) : 426 - 428
  • [8] Spatial heterogeneity in epidemic models
    Lloyd, AL
    May, RM
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1996, 179 (01) : 1 - 11
  • [9] Simulation testing the robustness of stock assessment models to error: some results from the ICES strategic initiative on stock assessment methods
    Deroba, J. J.
    Butterworth, D. S.
    Methot, R. D., Jr.
    De Oliveira, J. A. A.
    Fernandez, C.
    Nielsen, A.
    Cadrin, S. X.
    Dickey-Collas, M.
    Legault, C. M.
    Ianelli, J.
    Valero, J. L.
    Needle, C. L.
    O'Malley, J. M.
    Chang, Y-J.
    Thompson, G. G.
    Canales, C.
    Swain, D. P.
    Miller, D. C. M.
    Hintzen, N. T.
    Bertignac, M.
    Ibaibarriaga, L.
    Silva, A.
    Murta, A.
    Kell, L. T.
    de Moor, C. L.
    Parma, A. M.
    Dichmont, C. M.
    Restrepo, V. R.
    Ye, Y.
    Jardim, E.
    Spencer, P. D.
    Hanselman, D. H.
    Blaylock, J.
    Mood, M.
    Hulson, P. -J. F.
    [J]. ICES JOURNAL OF MARINE SCIENCE, 2015, 72 (01) : 19 - 30
  • [10] SPATIAL HETEROGENEITY AND MODELS OF SURFACE RUNOFF
    QUIMPO, RG
    [J]. JOURNAL OF HYDROLOGY, 1984, 68 (1-4) : 19 - 28