Comparing generalised maximum entropy and partial least squares methods for structural equation models

被引:40
|
作者
Ciavolino, Enrico [1 ]
Al-Nasser, Amjad D. [2 ]
机构
[1] Univ Salento, Dipartimento Filosofia & Sci Sociali, Lecce, Italy
[2] Yarmouk Univ, Dept Stat, Irbid, Jordan
关键词
generalised maximum entropy; partial least squares; structural equation models; messy data; customer satisfaction index; INFORMATION-THEORY;
D O I
10.1080/10485250903009037
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The generalised maximum entropy (GME) method is presented for estimating structural equation models, where a real data set of the Service&MotorVehicle Industry in Sweden is used to show the implementation of the method. Monte Carlo simulation comparisons are also made between GME and partial least squares (PLS) methods in the presence of messy data. Three cases are considered: outliers, missing data and multicollinearity. It is shown that this method can be considered a valid alternative to the conventional method of PLS, where the results of GME, in terms of mean squared error, outperform the PLS results in some respects.
引用
收藏
页码:1017 / 1036
页数:20
相关论文
共 50 条
  • [1] CONSISTENT PARTIAL LEAST SQUARES FOR NONLINEAR STRUCTURAL EQUATION MODELS
    Dijkstra, Theo K.
    Schermelleh-Engel, Karin
    [J]. PSYCHOMETRIKA, 2014, 79 (04) : 585 - 604
  • [2] Consistent Partial Least Squares for Nonlinear Structural Equation Models
    Dijkstra T.K.
    Schermelleh-Engel K.
    [J]. Psychometrika, 2014, 79 (4) : 585 - 604
  • [3] A Primer on Partial Least Squares Structural Equation Modeling
    Ketchen, David J., Jr.
    [J]. LONG RANGE PLANNING, 2013, 46 (1-2) : 184 - 185
  • [4] Partial Least Squares is an Estimator for Structural Equation Models: A Comment on Evermann and Ronkko (2021)
    Schuberth, Florian
    Zaza, Sam
    Henseler, Jorg
    [J]. COMMUNICATIONS OF THE ASSOCIATION FOR INFORMATION SYSTEMS, 2023, 52 : 711 - 729
  • [5] Partial Least Squares: The Better Approach to Structural Equation Modeling?
    Hair, Joseph F.
    Ringle, Christian M.
    Sarstedt, Marko
    [J]. LONG RANGE PLANNING, 2012, 45 (5-6) : 312 - 319
  • [6] Partial least squares structural equation modeling in HRM research
    Ringle, Christian M.
    Sarstedt, Marko
    Mitchell, Rebecca
    Gudergan, Siegfried P.
    [J]. INTERNATIONAL JOURNAL OF HUMAN RESOURCE MANAGEMENT, 2020, 31 (12): : 1617 - 1643
  • [7] semPLS: Structural Equation Modeling Using Partial Least Squares
    Monecke, Armin
    Leisch, Friedrich
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 48 (03): : 1 - 32
  • [8] Nonlinear structural equation modeling: is partial least squares an alternative?
    Schermelleh-Engel, Karin
    Werner, Christina S.
    Klein, Andreas G.
    Moosbrugger, Helfried
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2010, 94 (02) : 167 - 184
  • [9] Nonlinear structural equation modeling: is partial least squares an alternative?
    Karin Schermelleh-Engel
    Christina S. Werner
    Andreas G. Klein
    Helfried Moosbrugger
    [J]. AStA Advances in Statistical Analysis, 2010, 94 : 167 - 184
  • [10] The Use of Partial Least Squares Structural Equation Modeling and Complementary Methods in International Management Research
    Nicole F. Richter
    Sven Hauff
    Christian M. Ringle
    Siegfried P. Gudergan
    [J]. Management International Review, 2022, 62 : 449 - 470